In this paper, we compare two methods of estimating relevance for the emergency electronic brake light application: One method uses an analytically derived formula based on the minimum safety gap that is required to avoid a collision, whereas the other method uses a machine learning approach. The application works by disseminating reports about vehicles that perform emergency deceleration in an effort to warn drivers about the need to perform emergency braking. Vehicles that receive such reports have to decide on whether the information contained in the report is relevant to the driver and warn the driver if that is the case. Common ways of determining relevance are based on the lane or direction information, but using only these attributes can lead to many false warnings, which can desensitize the driver. Desensitized drivers may ignore warnings or completely turn off the system, thus eliminating any safety benefits of the application. We show that the machine learning method, compared with the analytically derived formula, can significantly reduce the number of false warnings by learning from the actions that drivers take after receiving a report. The methods were compared using simulated experiments with a range of traffic and communication parameters.
Abstract-In this paper, we compare two methods of estimating relevance for the emergency electronic brake light application. One uses an analytically derived formula based on the minimal safety gap required to avoid a collision. The other method uses a machine learning approach. The application works by disseminating reports about vehicles that are performing emergency deceleration in effort to warn drivers about the need to perform emergency braking. Vehicles which receive such reports have to decide whether the information contained in the report is relevant to the driver, and warn the driver if that is the case. Common ways to determine relevance are based on the lane or direction information, but using only these attributes can still lead to many false warnings, which can desensitize the driver. Desensitized drivers may ignore warnings or turn off the system completely, thus eliminating any safety benefits of the application. We show that the machine learning method, in comparison to the analytically derived formula, is able to significantly reduce the number of false warnings by learning from the actions drivers take after receiving a report. The methods were compared using simulated experiments with a range of traffic and communication parameters.
The use of Vehicular Ad-Hoc Network (VANET) has been applied to many applications involving information dissemination. Many of such applications are limited by the communication limitations of a VANET, such as limited transmission range and bandwidth. This imposes a necessity for evaluating the relevance of information. This paper proposes the use of machine learning for finding relevance of information for a parking information dissemination system. The proposed method uses the learned relevance for aiding vehicles in decision making by finding the probability that a given parking location will be available at the time of arrival. The method was evaluated through simulations and the results show that the proposed method is successful at learning the relevance of parking reports, which resulted in lower parking discovery times for vehicles.
This paper looks at the problem of data prioritization, commonly found in mobile ad-hoc networks. The proposed general solution uses a machine learning approach in order to learn the relevance value of reports, which represent sensed data. The general solution is then applied to a travel time dissemination application. Through the use of offline learning, the paper analyzes the feasibility of the proposed approach and compares the accuracy performance of several common machine learning algorithms. The results show that not all machine learning algorithms may be used for prioritization and that the use of the logistic regression algorithm is particularly suited for the problem. The learned logistic regression model is then used in a simulated VANET environment. The results of the simulations show that it is better at prioritizing reports in terms of their usefulness in aiding vehicles to choose the shortest travel time paths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.