The paper presents the results of experimental investigation of lightweight cementitious composites with cenospheres (LCCC) exposed to high temperatures. We showed the positive effect of cenospheres on post- fire residual compressive strength in previous papers. This paper focuses on the LCCC with the addition of polypropylene (PP) fibres. Specimens are heated up to 400, 600, 800, 1000 and 1200 °C. Then they are cooled to ambient temperature and their residual flexural and compressive strength is tested. The results are compared with non-heated specimens with compressive strength above 50 MPa. For plain LCCC composites, the results show significant improvement of residual compressive strength in comparison with typical concretes. No significant changes of compressive strength are found after exposure to temperatures up to 600°C – more than 85 % of the residual compressive strength is retained after exposure to this temperature for both mixes. Polypropylene fibres are found to be a successful mean to mitigate spalling without significantly lowering neither ambient nor residual compressive strength. Moreover, designed composite has low density and low thermal conductivity at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.