Thermoelectric effects in a double quantum dot system coupled to external magnetic/nonmagnetic leads are investigated theoretically. The basic thermoelectric transport characteristics, like thermopower, electronic contribution to heat conductance, and the corresponding figure of merit, have been calculated in terms of the linear response theory and Green function formalism in the HartreeFock approximation for Coulomb interactions. An enhancement of the thermal efficiency (figure of merit ZT ) due to Coulomb blockade has been found. The magnitude of ZT is further considerably enhanced by quantum interference effects. Both the Coulomb correlations and interference effects lead to strong violation of the Wiedemann-Franz law. The influence of spin-dependent transport and spin bias on the thermoelectric effects (especially on Seebeck and spin Seebeck effects) is also analyzed.
Spin-dependent transport through two coupled single-level quantum dots attached to ferromagnetic leads with collinear ͑parallel and antiparallel͒ magnetizations is analyzed theoretically by the nonequilibrium Green function technique. Transport characteristics, in particular, linear and nonlinear differential conductance and tunnel magnetoresistance associated with the magnetization rotation from antiparallel to parallel alignment, are calculated numerically with intradot Coulomb interaction taken into account. The relevant Green functions are derived by the equation of motion method within the Hartree-Fock decoupling scheme. The dot occupations and Green functions are calculated self-consistently, and the numerical analysis is focused on the interference ͑Fano antiresonance͒ and Coulomb interaction effects. It is shown that the presence of Fano antiresonance depends on the sign of the nondiagonal coupling elements.
We investigate the current cross-correlations in a double quantum dot based Cooper pair splitter coupled to one superconducting and two ferromagnetic electrodes. The analysis is performed by assuming a weak coupling between the double dot and ferromagnetic leads, while the coupling to the superconductor is arbitrary. Employing the perturbative real-time diagrammatic technique, we study the Andreev transport properties of the device, focusing on the Andreev current cross-correlations, for various parameters of the model, both in the linear and nonlinear response regimes. Depending on parameters and transport regime, we find both positive and negative current cross-correlations. Enhancement of the former type of cross-correlations indicates transport regimes, in which the device works with high Cooper pair splitting efficiency, contrary to the latter type of correlations, which imply negative influence on the splitting. The processes and mechanisms leading to both types of current cross-correlations are thoroughly examined and discussed, giving a detailed insight into the Andreev transport properties of the considered device. PACS numbers: 73.23.-b,73.21.La,74.45.+c,72.25.-b
Electronic transport through a triple quantum dot system, with only a single dot coupled directly to external leads, is considered theoretically. The model includes Coulomb correlations in the central dot, while such correlations in the two side-coupled dots are omitted. The infinite-U mean-field slave-boson approach is used to obtain basic transport characteristics in the Kondo regime. When tuning the position of the side-coupled dots' levels, transition from subradiant to superradiant-like mode ͑and vice versa͒ has been found in the spectral function, in analogy to the Dicke effect in atomic physics. Bias dependence of the differential conductance and zero-frequency shot noise is also analyzed.
The Andreev transport through a quantum dot coupled to two external ferromagnetic leads and one superconducting lead is studied theoretically by means of the real-time diagrammatic technique in the sequential and cotunneling regimes. We show that the tunnel magnetoresistance (TMR) of the Andreev current displays a nontrivial dependence on the bias voltage and the level detuning, and can be described by analytical formulas in the zero temperature limit. The cotunneling processes lead to a strong modification of the TMR, which is most visible in the Coulomb blockade regime. We find a zero-bias anomaly of the Andreev differential conductance in the parallel configuration, which is associated with a nonequilibrium spin accumulation in the dot triggered by Andreev processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.