It is widely accepted that the Marginal Value Theorem (MVT) describes optimal foraging strategies of animals and the mechanism proposed by the MVT has been supported by a number of field observations. However, findings of many researchers indicate that in natural conditions foragers do not always behave according to the MVT. To address this inconsistency, in a series of computer simulation experiments, we examined the behaviour of four types of foragers having specific foraging efficiencies and using the MVT strategies in 15 different landscapes in an ideal environment (no intra-and inter-specific interactions). We used data on elk (Cervus elaphus) to construct our virtual forager. Contrary to the widely accepted understanding of the MVT (residence time in a patch should be longer in environments where travel time between patches is longer) we found that in environments with the same average patch quality and varying average travel times between patches, patch residence times of some foragers are not affected by travel times. Based on our analysis we propose a mechanism responsible for this observation and formulate the perfect forager theorem (PFT). We also introduce the concepts of a foraging coefficient (F) and foragers' hub (α), and propose a model to describe the relationship between the perfect forager and all other forager types.
Woodland caribou (Rangifer tarandus) are classified as threatened in Alberta. In support of Canada's Species at Risk Act, a Recovery Plan for Woodland Caribou in Alberta was completed in 2004 which required local implementation plans to be completed within 5 areas of the province. The West Central Alberta Caribou Landscape Plan (WCCLP) is the first of these to be initiated and it addresses the recovery strategies for 4 herds. Two aspatial computer models built on the STELLA© modelling platform (ISee Systems, 2007) were used to assist the planning team in evaluating cumulative effects and alternative scenarios for caribou conservation. The ALCES© (Forem Technologies 2008) modelling tool was used to forecast potential changes in the west central Alberta landscape over time. Yearly landscape condition outputs from ALCES© were then exported into a caribou-specific population model, REMUS© (Weclaw, 2004), that was used to project potential population responses by woodland caribou, other primary prey species [moose (Alces alces), elk (Cervus elaphus) and deer (Odocoileus sp.)] and wolves (Canis lupus) (Weclaw & Hudson, 2004). Simulated habitat management strategies that resulted in the highest likelihood of caribou recovery included the maintenance of a high proportion of old forest, the aggregation of industrial footprints and the reclamation of historic seismic lines (although the latter took decades to provide real dividends). Sharing of industrial roads, protection of fragments of old-growth, and expanding an already aggressive fire control strategy in Alberta had little additional effect on caribou recovery. Simulated population management strategies that were successful all involved decades of intensive wolf control, either directly or indirectly through intensive primary prey control (with the exception of woodland caribou) until old-growth forests recovered to densities that provided caribou habitat and decreased alternate prey of wolves. Although this modelling approach makes broad assumptions, it provides simple fundamental relationships that were useful in a multi-stakeholder team setting when evaluating the efficacy of different management strategies for the conservation of woodland caribou
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.