Abstract:Acinetobacter baumannii is an opportunistic pathogen which play the more and more greater role in the pathogenicity of the human. It is often attached with the hospital environment, in which is able easily to survive for many days even in adverse conditions. Acinetobacter baumannii is the species responsible for a serious nosocomial infections, especially in the intensive care units. Option of surviving in natural niches, and in the hospital environment could also be associated with the efflux pump mechanisms. Mechanisms of efflux universally appear in all cells (eukaryotic and prokaryotic) and play the physiological important role. In prokaryote, the main functions are evasion of such naturally produced molecules, removal of metabolic products and toxins. These pumps could also be involved in an early stage of infection, such as adhesion to host cells and the colonization. Importantly, they remove commonly used antibiotics from the cell in therapy of infections caused by these bacteria. Efflux pumps exemplify a unique phenomenon in drug resistance: a single mechanism causing resistance against several different classes of antibiotics. In Acinetobacter baumannii, the AdeABC efflux pump, a member of the resistance-nodulation-cell division family (RND), has been well characterized. Aminoglicosides, tetracyclines, erythromycin, chloramphenicol, trimethoprim, fluoroquinolones, some β-lactams, and also recently tigecycline, were found to be substrates for this pump. Drugs, as substrates for the AdeABC pump, can increase the expression of the AdeABC genes, leading to multidrug resistance (MDR). From this reason, treatment failure and death caused by Acinetobacter baumannii infections or underlying diseases are common. Because the AdeABC pump is widespread in Acinetobacter baumannii, similarly to other pumps in Gram-negative and Gram-positive bacteria, exists a need of searching a new therapeutic solutions. Specific efflux inhibitors of pumps (EPIs), including AdeABC inhibitors, could be suppress the activity of pumps and restore the sensitivity of such important bacteria as Acinetobacter baumannii to commonly used antibiotic.
Since about twenty years, following the introduction into therapeutic of news β-lactam antibiotics (broad-spectrum cephalosporins, monobactams and carbapenems), a very significant number of new β-lactamases appeared. These enzymes confer to the bacteria which put them, the means of resisting new molecules. The genetic events involved in this evolution are of two types: evolution of old enzymes by mutation and especially appearance of new genes coming for some, from bacteria of the environment. Numerous mechanisms of enzymatic resistance to the carbapenems have been described in Pseudomonas aeruginosa. The important mechanism of inactivation carbapenems is production variety of b-lactam hydrolysing enzymes associated to carbapenemases. The metallo-β-enzymes (IMP, VIM, SPM, GIM types) are the most clinically significant carbapenemases. P. aeruginosa posses MBLs and seem to have acquired them through transmissible genetic elements (plasmids or transposons associated with integron) and can be transmission to other bacteria. They have reported worldwide but mostly from South East Asia and Europe. The enzymes, belonging to the molecular class B family, are the most worrisome of all β-lactamases because they confer resistance to carbapenems and all the β-lactams (with the exception of aztreonam) and usually to aminoglycosides and quinolones. The dissemination of MBLs genes is thought to be driven by regional consumption of extended -spectrum antibiotics (e.g. cephalosporins and carbapenems), and therefore care must be taken that these drugs are not used unnecessarily.
Erythromycin (EM) and tobramycin (TOB) are well-known and widely used antibiotics, belonging to different therapeutic groups: macrolide and aminoglycoside, respectively. Moreover, they possess different solubility: EM is slightly soluble and TOB is freely soluble in water. It was previously demonstrated that PAMAM dendrimers enhanced the pharmacological activity of antifungal drugs by increasing their solubility. Therefore, it appears interesting to investigate the effect of PAMAM-NH 2 and PAMAM-OH dendrimers generation 2 (G2) and generation 3 (G3) on the antibacterial activity of antibiotics with different water solubility. In this study it was shown that the aqueous solubility of EM was significantly increased by PAMAM dendrimers (PAMAM-NH 2 and PAMAM-OH caused about 8-and 7-fold solubility increases, respectively). However, it was indicated that despite the increase in the solubility, there was only slight influence on the antibacterial activity of EM (2-and 4-fold decreases in the MBC values of EM in the presence of PAMAM-OH G3 and PAMAM-NH 2 G2 or G3 for strains of Staphylococcus aureus were noted, respectively). It was also found that there was no influence of PAMAM on the antibacterial activity of hydrophilic TOB.
The growing incidence of multidrug-resistant (MDR) bacteria is an emerging challenge in modern medicine. The utility of carbapenems, considered “last-line” agents in therapy of infections caused by MDR pathogens, is being diminished by the growing incidence of various resistance mechanisms. Enterobacter cloacae have lately begun to emerge as an important pathogen prone to exhibiting multiple drug resistance. We aimed to investigate the molecular basis of carbapenem-resistance in 44 E. cloacae clinical strains resistant to at least one carbapenem, and 21 susceptible strains. Molecular investigation of 65 E. cloacae clinical strains was based on quantitative polymerase chain reaction (qPCR) allowing for amplification of ampC, ompF, and ompC transcripts, and analysis of nucleotide sequences of alleles included in MLST scheme. Co-operation of three distinct carbapenem resistance mechanisms has been reported—production of OXA-48 (5%), AmpC overproduction (97.7%), and alterations in outer membrane (OM) transcriptome balance. Carbapenem-resistant E. cloacae were characterized by (1.) downregulation of ompF gene (53.4%), which encodes protein with extensive transmembrane channels, and (2.) the polarization of OM transcriptome-balance (79.1%), which was sloped toward ompC gene, encoding proteins recently reported to possess restrictive transmembrane channels. Subpopulations of carbapenem-susceptible strains showed relatively high degrees of sequence diversity without predominant types. ST-89 clearly dominates among carbapenem-resistant strains (88.6%) suggesting clonal spread of resistant strains. The growing prevalence of pathogens resistant to all currently available antimicrobial agents heralds the potential risk of a future “post-antibiotic era.” Great efforts need to be taken to explore the background of resistance to “last resort” antimicrobials.
Ketoconazole (KET), an imidazole derivative with well-known antifungal properties, is lipophilic and practically insoluble in water, therefore its clinical use has some practical disadvantages. The aim of the present study was to investigate the influence of PAMAM-NH2 and PAMAM-OH dendrimers generation 2 and generation 3 on the solubility and antifungal activity of KET and to design and evaluate KET hydrogel with PAMAM dendrimers. It was shown that the surface charge of PAMAM dendrimers strongly affects their influence on the improvement of solubility and antifungal activity of KET. The MIC and MFC values obtained by broth dilution method indicate that PAMAM-NH2 dendrimers significantly (up to 16-fold) increased the antifungal activity of KET against Candida strains (e.g., in culture Candida albicans 1103059/11 MIC value was 0.008 μg/mL and 0.064 μg/mL, and MFC was 2 μg/mL and 32 μg/mL for KET in 10 mg/mL solution of PAMAM-NH2 G2 and pure KET, respectively). Antifungal activity of designed KET hydrogel with PAMAM-NH2 dendrimers measured by the plate diffusion method was definitely higher than pure KET hydrogel and than commercial available product. It was shown that the improvement of solubility and in the consequence the higher KET release from hydrogels seems to be a very significant factor affecting antifungal activity of KET in hydrogels containing PAMAM dendrimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.