Empagliflozin is a relatively new drug that, as an inhibitor of the sodium–glucose cotransporter 2 (SGLT2), causes increased urinary glucose excretion and thus contributes to improved glycemic control, better glucose metabolism, reduced glucotoxicity and insulin resistance. Although its original use was to induce a hypoglycemic effect in patients with type 2 diabetes mellitus (T2DM), empagliflozin has also shown a number of other beneficial effects by demonstrating a nephroprotective effect, and it has proven to be a breakthrough in the treatment of heart failure (HF). Empagliflozin has been shown to reduce hospitalizations for HF and the number of deaths from cardiovascular causes. Empagliflozin treatment also reduces the incidence of renal events, including death from renal causes, as well as the risk of end-stage renal failure. Empagliflozin appears to be a fairly well-tolerated and safe drug. In patients with inadequate glycemic control, empagliflozin used in monotherapy or as an adjunct to therapy effectively lowers fasting blood glucose, postprandial blood glucose, average daily glucose levels, glycated hemoglobin A1C (HbA1C) and also leads to significant weight reduction in patients with T2DM. Unfortunately, there are some limitations, e.g., severe hypersensitivity reaction to the drug and a glomerular filtration rate (GFR) < 30 mL/min/1.73m2. As with any drug, empagliflozin is also characterized by several side effects among which symptomatic hypotension, troublesome genital fungal infections, urinary tract infections and rare ketoacidosis are characteristic.
According to the 2021 report of the International Diabetes Federation (IDF), there have been approximately 573 million cases of type 2 diabetes mellitus (T2DM) among adults, which sets the disease as a major concern in healthcare worldwide. The development of T2DM is strongly promoted by unhealthy lifestyle factors associated with urbanization and western civilization. The disease is associated with a broad list of systemic complications that can result in premature death, disability and significantly reduced quality of life. The most dramatic in their consequences are cardiovascular complications of T2DM. Our work focuses on one such complication that is specific for diabetes, named diabetic cardiomyopathy (DC). In this condition cardiac dysfunction occurs despite the absence of underlying hypertension, coronary artery disease and valvular disease, which suggest a leading role for metabolic disturbances as a cause. We aimed to establish the role of relatively new hypoglycaemic drugs that have taken the medical world by storm with their broad pleiotropic effects—SGLT-2 inhibitors—in the prevention and treatment of DC at any stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.