This paper presents the results of an extensive investigation of asphalt concrete beams with geosynthetics interlayer. The subject of the research is an evaluation of infl uence of geosynthetics interlayer applied to bituminous samples on their fatigue life. The results of the tests evidences that when geosynthetics are used, the fatigue life depends mainly on the type of bituminous mixture, the type of geosynthetics, and the type and the amount of bitumen used for saturation and sticking. The amount of bitumen used to saturate and fi x the geosynthetic signifi cantly changes the samples fatigue properties. Essential positive correlation between fatigue and parameters of interlayer bonding (shear strength, shear stiffness) occurs in both testing temperatures.
The paper presents the dependence of ITS results at the elevated temperature (40°C) on rutting parameters, i.e.proportional rut depth (PRDAIR) and wheel tracking speed (WTSAIR), obtained at the temperature of 60°C. The asphalt mixture samples were prepared in the gyratory compactor, but ITS tests were conducted with typicalMarshall press, at a loading rate of 50 mm/min. Correlation analyses show a strong relationships between ITS results and rutting parameters, whereby the correlation coefficients obtained are higher for the PRDAIR parameter (r = -0.88) than WTSAIR (r = -0.81). Using the obtained regression functions, the prediction limits as well as confidence limits were calculated, which allowed to develop criteria for assessing resistance to rutting on the basis of ITS test, and taking into account the technical requirements in Poland.Keywords: asphalt concrete (AC), indirect tensile strength (ITS), proportional rut depth (PRD), wheel tracking speed (WTS), permanent deformation of the asphalt pavement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.