NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher's version remain. You are advised to consult the publisher's version if you wish to cite from this article.The definitive version is available at http://onlinelibrary.wiley.com Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. (Evans et al., 2005). In the water 55 industry, the high cost of DOC removal, and associated health risks through trihalomethane 56 formation (e.g. Chow et al., 2003), result in it being widely viewed as a pollutant. Changes in DOC 57 export to surface waters also affect aquatic energy supply and light regime (due to the 58 chromophoric properties of organic compounds), with potentially major consequences for the 59 functioning of aquatic ecosystems (Cole et al., 2001; Battin et al., 2009;Karlsson et al., 2010). When 60 first detected, DOC increases were thought to be a consequence of climate change (Freeman et al., 61 2001; Hejzlar et al., 2003;Worrall & Burt, 2007; Hongve et al., 2004), and thus evidence of 62 ecosystem destabilisation, contributing to terrestrial carbon losses (Bellamy et al., 2005). Some 63 recent studies also suggest high climate-sensitivity of DOC leaching (e.g. Larssen et al., 2011; Fenner 64 & Freeman, 2011 Oulehle & Hruska, 2009; Chapman et 72 al., 2010; Arvola et al., 2010; Clark et al., 2011; Ekström et al., 2011;SanClements et al., 2012) and 73 challenging (e.g. Roulet & Moore, 2006; Eimers et al., 2008;Worrall et al., 2008; Clair et al., 2008; 74 Sarkkola et al., 2009;Sarkkola et al., 2009;Zhang et al., 2010; Couture et al., 2011; Löfgren and 75 Zetterberg, 2011; Pärn & Mander, 2012) Figure S1b). 167At the Afon Gwy AWMN site, 50 km to the south, DOC has increased by 51% over the same period , pH range 3.9 to 4.4). In addition, the Peak District peat 237 and Migneint podzol sites exhibited some pre-treatment differences in mean DOC concentrations 238 between control and treatment plots ( Figure 1, Table 1). To explore underlying relationships 239 between DOC and pH change, we therefore standardised DOC concentrations by dividing mean DOC 240 for each treatment at each site and sampling interval by the corresponding pre-treatment mean. 241Deviation from this initial level due to treatment was quantified as the ratio of mean standardised habitats showed an increase in mean pH between the two surveys, and these mean values were 296 used to calculate RH std as above,...
The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
Abstract. Peatlands are large terrestrial stores of carbon, and sustained CO 2 sinks, but over 1 the last century large areas have been drained for agriculture and forestry, potentially 2 converting them into net carbon sources. More recently, some peatlands have been re-wetted 3 by blocking drainage ditches, with the aims of enhancing biodiversity, mitigating flooding 4 and promoting carbon storage. One potential detrimental consequence of peatland re-wetting 5 is an increase in methane (CH 4 ) emissions, offsetting the benefits of increased CO 2 6 sequestration. We examined differences in CH 4 emissions between an area of ditch-drained 7 blanket bog, and an adjacent area where drainage ditches were recently infilled. Results 8 showed that Eriophorum vaginatum colonisation led to a 'hotspot' of CH 4 emissions from the 9 infilled ditches themselves, with smaller increases in CH 4 from other re-wetted areas. 10Extrapolated to the area of blanket bog surrounding the study site, we estimated that CH 4 11 emissions were around 60 kg CH 4 ha -1 yr -1 prior to drainage, reducing to 44 kg CH 4 ha -1 yr
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.