The Hedgehog signaling pathway is involved in both development and cancer induction in a wide range of organisms. The end point of the Hedgehog signal-transduction cascade is the Gli/Ci, zinc-finger transcription factors. Proteins such as Fused, Suppressor of fused (SUFU), Costal-2, and protein kinase A are essential for regulation of Gli/Ci processing, activity, and localization. Coimmunoprecipitation and Far Western assays, coupled with truncation analysis and mutagenesis have been used to define the region of interaction between Gli proteins and SUFU. We identify a novel motif SYGH in Gli/Ci family proteins, which is required for the interaction with SUFU. Mutational studies revealed that Gly 122 and His 123 are crucial for binding to SUFU, suggesting the importance of hydrophobicity for the correct binding conformation. Functional analysis revealed that the activity of GLI transcription factors with mutations in this motif is no longer suppressed by coexpression of SUFU. Moreover, we have found that a C-terminal 19-amino acid deletion in SUFU (⌬465) is sufficient to abrogate interaction with GLI1. Interestingly, this SUFU mutant localizes in the nucleus, most probably because it is not efficiently sequestered in the cytoplasm. Taken together, we identified a novel motif in the Gli/Ci family of proteins that is essential both for protein-protein interaction with SUFU and for functional repression of GLI1 by SUFU.
Gli transcription factors are downstream targets of the Hedgehog signaling pathway. Two of the three Gli proteins harbor gene transcription repressor function in the N-terminal half. We have analyzed the sequences and identified a potential repressor domain in Gli2 and Gli3 and have tested this experimentally. Overexpression studies confirm that the N-terminal parts harbor gene repression activity and we mapped the minimal repressor to residues 106 till 236 in Gli3. Unlike other mechanisms that inhibit Gli induced gene transcription, the repressor domain identified here does not utilize Histone deacetylases (HDACs) to achieve repression, as confirmed by HDAC inhibition studies and pull-down assays. This distinguishes the identified domain from other regulatory parts with negative influence on transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.