The objective of this study was to compare microfiltered native whey protein concentrate and traditional cheese whey protein concentrate powders and their functional properties. Solubility, viscosity, gelation, foaming properties, emulsification and water‐holding capacity were studied. The effect of spray and freeze drying methods on functional properties was evaluated. Gel strength varied from 0.11 to 0.65 N. Foaming stability and overrun varied from 0 to 29.3 min and from 230 to 2200%, respectively. Foaming and gelation properties were clearly better with native whey protein powders. Differences between drying methods were not observed but higher heat load decreased solubility.
Advances in processing technologies and the accumulation of scientific data on the functional and biological properties of whey components have contributed to the growing commercial valuation of cheese whey over the last decade. New membrane separation and chromatographic techniques have made it possible to fractionate and enrich various components of whey more efficiently than before. The specific properties of these components can now be examined in greater detail and new applications developed accordingly. The utilisation of cheese whey is evolving into a new industry producing a multitude of purified ingredients for numerous purposes. The most significant areas of R&D related to whey proteins include functional foods, the rheological properties of foodstuffs, and biopharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.