The annotation of song changes in music mixes created by DJs or radio stations for direct access in digital recordings is, usually, a very tedious work. In order to support this process we developed an automatic song change detection method which can be used for arbitrary music mixes. Stochastic models are applied to music data aiming at their segmentation with respect to automatically obtained abstract generic acoustic units. The local analysis of these stochastic music models provides hypotheses for song changes. Results of an experimental evaluation processing music mix data demonstrate the effectiveness of our method for supporting the annotation with respect to song changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.