Ligand electrochemical parameters, E L , more commonly known as Lever parameters, have played a major research role in understanding redox processes involved in inorganic electrochemistry, enzymatic reactions, catalysis, solar cells, biochemistry, and materials science. Despite their broad usefulness, Lever parameters are not well understood at a first-principles level. Using density functional theory, we demonstrate in this contribution that a ligand's Lever parameter is fundamentally related to the ligand's ability to alter the eigenvalue of the electroactive spin-orbital in an octahedral transition metal complex. Our analysis furthers a first-principles understanding of the nature of Lever parameters.
The legalisation of hemp has led to wide commercial availability of cannabidiol (CBD)-containing products. Here we show that the CBD-hydroxyquinone (HU-331), a readily formed oxidation product and common impurity in CBD isolates, undergoes a previously unknown photo-isomerisation to produce a highly reactive intermediate in solution. Studies supported by calculations indicate that this intermediate rapidly reacts with oxygen to form a multitude of cannabinoid products. The purple colour observed in light-aged CBD-containing solutions is largely due to the anions of these by-products and is not significantly due to the HU-331 anion. Our findings suggest that these uncharacterized cannabinoid derivatives can be present in CBD-containing e-liquids and solutions that have been stored under ambient light conditions, calling for quality control processes that manage HU-331 contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.