Studies using this micro-system demonstrated significant morphological differences between alveolar epithelial cells (transformed human alveolar epithelial cell line, A549 and primary murine alveolar epithelial cells, AECs) exposed to combination of solid mechanical and surface-tension stresses (cyclic propagation of air-liquid interface and wall stretch) compared to cell populations exposed solely to cyclic stretch. We have also measured significant differences in both cell death and cell detachment rates in cell monolayers experiencing combination of stresses. This research describes new tools for studying the combined effects of fluid mechanical and solid mechanical stress on alveolar cells. It also highlights the role that surface tension forces may play in the development of clinical pathology, especially under conditions of surfactant dysfunction. The results support the need for further research and improved understanding on techniques to reduce and eliminate fluid stresses in clinical settings.
Airways of the peripheral lung are prone to closure at low lung volumes. Deficiency or dysfunction of pulmonary surfactant during various lung diseases compounds this event by destabilizing the liquid lining of small airways and giving rise to occluding liquid plugs in airways. Propagation of liquid plugs in airways during inflation of the lung exerts large mechanical forces on airway cells. We describe a microfluidic model of small airways of the lung that mimics airway architecture, recreates physiologic levels of pulmonary pressures, and allows studying cellular response to repeated liquid plug propagation events. Substantial cellular injury happens due to the propagation of liquid plugs devoid of surfactant. We show that addition of a physiologic concentration of a clinical surfactant, Survanta, to propagating liquid plugs protects the epithelium and significantly reduces cell death. Although the protective role of surfactants has been demonstrated in models of a propagating air finger in liquid-filled airways, this is the first time to study the protective role of surfactants in liquid plugs where fluid mechanical stresses are expected to be higher than in air fingers. Our parallel computational simulations revealed a significant decrease in mechanical forces in the presence of surfactant, confirming the experimental observations. The results support the practice of providing exogenous surfactant to patients in certain clinical settings as a protective mechanism against pathologic flows. More importantly, this platform provides a useful model to investigate various surface tension-mediated lung diseases at the cellular level.
A 3D computational model was developed to study the flow and the transport and deposition of nano-size particle in a realistic human nasal passage. The nasal cavity was constructed from a series of MRI images of coronal sections of a nose of a live human subject. For several breathing rates associated with low or moderate activities, the steady state flows in the nasal passage were simulated numerically. The airflow simulation results were compared with the available experimental data for the nasal passage. Despite the anatomical differences of the human subjects used in the experiments and computer model, the simulation results were in qualitative agreement with the experimental data.Deposition and transport of ultrafine particles (1 to 100 nm) in the nasal cavity for different breathing rates were also simulated using an Eulerian-Lagrangian approach. The simulation results for the nasal capture efficiency were found to be in reasonable agreement with the available experimental data for a number of human subjects given typical anatomical differences. The computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate especially for the particles smaller than 20 nm. Based on the simulated results, a semi-empirical equation for the capture efficiency of the nasal passage for nano-size particles was fitted in terms of Peclet number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.