The present research primarily focuses on the investigation of gate-entry stability of longwall trial panel under weak geological condition in Indonesia coal mine by means of numerical analysis. This work aims at identifying appropriate roof support at 100 m and 150 m of depth during gate development. Due to depth depending competency of dominant rock, the stability of gate-entry at 100 m of depth can be optimized by leaving at least 1 m of remaining coal thickness (RCT) above and below the gate-entry. The appropriate support for the trial panel gate-entry is steel arch SS540 with 1 m and 0.5 m spacing for 100 m and 150 m of depth, respectively. The influence of panel excavation on gate-entry is also discussed. Regarding the aforementioned influence, the utilization of additional gate mobile support is recommended at least 10 m from the longwall face.
Developing longwall mining under weak geological conditions imposes a substantial challenge with regard to the higher risk of falling roofs. Maintaining the stability of the longwall face in this aforementioned condition is crucial for smooth operation. Investigating roof conditions in longwall requires detailed study of rock behavior in response to a few key influences. This paper presents the outcome of a numerical analysis of roof stability in shallow depth longwall face under weak geological conditions. A series of validated FLAC3D models was developed to examine the roof condition of the longwall face under the influence of shield canopy ratio, shield resistance force, and stress ratio. The results show that these three key factors have a significant impact on longwall roof conditions, which can be used to optimize its stability. Two distinct mechanisms of the roof caving behavior can be observed under the influence of stress ratio. The countermeasures of reducing face-to-tip distance and cutting width are proposed to improve the roof condition of longwall face under weak rock. The outcomes show a substantial improvement in roof conditions after adopting the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.