While designing fast fourier transform (FFT) cores, due to the use of multiplexers, memory, or ROMs, there is a substantial increase in power consumption and area. In order to increase speed and throughput, folding and pipelining methods have been approached by various existing designs. But the prime disadvantage of those architectures is the use of multipliers for twiddle multiplications. This present work has proposed fast fourier transform using compressors based multiplier. Both parallel and pipelining techniques have also been used in the proposed designs. Carry Select adder is known to be the fastest adder among the Conventional adder structures. This work uses an efficient Carry select adder by sharing the binary to excess-1 converter (BEC) term. After a logic simplification, we only need one XOR gate, one AND gate and one inverter gate for carry and summation operation. Through the multiplexer, we can select the correct output according to the logic states of the carry in signal. These all design and experiments were carried out on a Xilinx 14.1i Spartan 3e device family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.