Virtual patients and physiologies allow experimentation, design, and early-stage clinical trials in-silico. Virtual patient technology for human movement systems that encompasses musculoskeleton and its neural control are few and far in between. In this work, we present one such neuro-musculoskeletal upper limb in-silico model. This upper limb is both modular in architecture and generates movement as an emergent phenomenon out of a multiscale co-simulation of spinal cord neural control and musculoskeletal dynamics. It is developed on the NEUROiD movement simulation platform that enables a co-simulation of popular neural simulator NEURON and the musculoskeletal simulator OpenSim. In this work, we describe the design and development of the upper limb in a modular fashion, while reusing existing models and modules. We further characterize and demonstrate the use of this model in generating a range of commonly observed movements by means of a spatio temporal stimulation pattern delivered to the cervical spinal cord. We believe this work enables a first and small step towards an in-silico paradigms for understanding upper limb movement, disease pathology, medication, and rehabilitation. Index Terms : co-simulation, in-silico, NEUROiD, neuromusculoskeletal, upper limb, Virtual patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.