Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin.
Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin.
Social media platforms have become prime forums for reporting news with users sharing what they saw, heard or read on social media. News from social media is potentially useful for various stakeholders including aid organizations, news agencies, and individuals. However, social media also contains a vast amount of nonnews content. For users to be able to draw on benefits from news reported on social media it is necessary to reliably identify news content and differentiate it from nonnews. In this paper, we tackle the challenge of classifying a social post as news or not. To this end, we provide a new manually annotated dataset containing 2,992 tweets from 5 different topical categories. Unlike earlier datasets, it includes postings posted by personal users who do not promote a business or a product and are not affiliated with any organization. We also investigate various baseline systems and evaluate their performance on the newly generated dataset. Our results show that the best classifiers are the SVM and BERT models.
This paper describes LTL-UDE's systems for the SemEval 2019 Shared Task 6. We present results for Subtask A and C. In Subtask A, we experiment with an embedding representation of postings and use a Multi-Layer Perceptron and BERT to categorize postings. Our best result reaches the 10th place (out of 103) using BERT. In Subtask C, we applied a two-vote classification approach with minority fallback, which is placed on the 19th rank (out of 65).
In this paper we present a browser plugin NewsScan that assists online news readers in evaluating the quality of online content they read by providing information nutrition labels for online news articles. In analogy to groceries, where nutrition labels help consumers make choices that they consider best for themselves, information nutrition labels tag online news articles with data that help readers judge the articles they engage with. This paper discusses the choice of the labels, their implementation and visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.