A benzo-fused double [7]carbohelicene (D7H) was synthesized through a regioselective cyclodehydrogenation of a tetranaphthyl-p-terphenyl-based precursor. The twisted (D7H-1) and anti-folded (D7H-2) conformers of D7H were separated by recrystallization, and their double helicene structures with overlapping terminal benzene rings were unambiguously elucidated by X-ray crystallography. A record-high isomerization barrier (46.0 kcal mol ) in double helicenes was estimated based on density functional theory (DFT) calculation, which resulted in the excellent conformational stability of D7H. The physicochemical properties of D7H-1 and D7H-2 were investigated by UV/Vis absorption spectroscopy and cyclic voltammetry, displaying the variation of electronic structure upon conformational changes. The optical resolution of the racemic D7H-1 was carried out by chiral HPLC, offering enantiopure D7H-1-(P,P) and D7H-1-(M,M), which were further characterized by circular dichroism spectroscopy.
Chiral organic cages can assist enantio-selective supramolecular polymerization through a catalyzed assembly (catassembly) strategy, like chaperones assist the assembly of biomolecules.
We constructed a series of novel chiral molecular face-rotating polyhedra (FRP) from two 10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (triazatruxene) derivatives and trans-1,2-cyclohexane diamine, and investigated how facial interactions and the positions of substituents determine the diastereoselectivity and geometry of the final assemblies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.