Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei ) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24 h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline.ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a timedependent manner in the presence of MG (46MBC) and reduced to zero within 20 h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp.
BackgroundThe continuous emergence of multidrug-resistant (MDR) bacteria drastically reduced the efficacy of our antibiotic armory and consequently, increased the frequency of therapeutic failure. The search for bioactive constituents from endophytic fungi against MDR bacteria became a necessity for alternative and promising strategies, and for the development of novel therapeutic solutions. We report here the isolation and structure elucidation of antibacterial and cytotoxic compounds from Phomopsis sp., an endophytic fungus associated with Garcinia kola nuts.MethodsThe fungus Phomopsis sp. was isolated from the nut of Garcinia kola. The crude extract was prepared from mycelium of Phomopsis sp. by maceration in ethyl acetate and sequentially fractionated by column chromatography. The structures of isolated compounds were elucidated on the basis of spectral studies and comparison with published data. The isolated compounds were evaluated for their antibacterial and anticancer properties by broth microdilution and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide methods respectively. The samples were also tested spectrophotometrically for their hemolytic properties against human red blood cells.ResultsThe fractionation of the crude extract afforded three known cytochalasins including 18-metoxycytochalasin J (1), cytochalasins H (2) and J (3) together with alternariol (4). The cytochalasin compounds showed different degrees of antibacterial activities against the tested bacterial pathogens. Shigella flexneri was the most sensitive microorganism while Vibrio cholerae SG24 and Vibrio cholerae PC2 were the most resistant. Ampicillin did not show any antibacterial activity against Vibrio cholerae NB2, Vibrio cholerae PC2 and Shigella flexneri at concentrations up to 512 μg/mL, but interestingly, these multi-drug resistant bacterial strains were sensitive to the cytochalasin metabolites. These compounds also showed significant cytotoxic properties against human cancer cells (LC50 = 3.66–35.69 μg/mL) with low toxicity to normal non-cancer cells.ConclusionThe three cytochalasin compounds isolated from the Phomopsis sp. crude extract could be a clinically useful alternative for the treatment of cervical cancer and severe infections caused by MDR Shigella and Vibrio cholerae.
This is the first report of a single-step synthesis of primary benzyl alcohol containing different cross-azo compounds (14 examples) by Cu(II) in the presence of a newly synthesized amino-ether heteroditopic macrobicycle cage. Interestingly, even with extreme conditions, the benzyl alcohol remains unoxidized by the Cu(II) catalyst due to the protective etherial pocket of the cage.
Background: The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. Objectives: This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. Methods: The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatographymass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 -128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 -9.21 µg/mL) against HeLa cells. Conclusion:The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.