We propose a classification technique for face expression recognition using AdaBoost that learns by selecting the relevant global and local appearance features with the most discriminating information. Selectivity reduces the dimensionality of the feature space that in turn results in significant speed up during online classification. We compare our method with another leading margin-based classifier, the Support Vector Machines (SVM) and identify the advantages of using AdaBoost over SVM in this context. We use histograms of Gabor and Gaussian derivative responses as the appearance features. We apply our approach to the face expression recognition problem where local appearances play an important role. Finally, we show that though SVM performs equally well, AdaBoost feature selection provides a final hypothesis model that can easily be visualized and interpreted, which is lacking in the high dimensional support vectors of the SVM.
Abstract-Computational thinking sits at the core of every engineering and computing related discipline. It has increasingly emerged as its own subject in all levels of education. It is a powerful cornerstone for cognitive development, creative problem solving, algorithmic thinking and designs, and programming. How to effectively teach computational thinking skills poses real challenges and creates opportunities. Targeting entering computer science and engineering undergraduates, we resourcefully integrate elements from artificial intelligence (AI) into introductory computing courses. In addition to comprehension of the essence of computational thinking, practical exercises in AI enable inspirations of collaborative problem solving beyond abstraction, logical reasoning, critical and analytical thinking. Problems in machine intelligence systems intrinsically connect students to algorithmic oriented computing and essential mathematical foundations. Beyond knowledge representation, AI fosters a gentle introduction to data structures and algorithms. Focused on engaging mental tool, a computer is never a necessity. Neither coding nor programming is ever required. Instead, students enjoy constructivist classrooms designed to always be active, flexible, and highly dynamic. Learning to learn and reflecting on cognitive experiences, they rigorously construct knowledge from collectively solving exciting puzzles, competing in strategic games, and participating in intellectual discussions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.