Trials
Open Access
Study protocolEmail: Sandra Y Silva -sandrasilvac@gmail.com; Ligia C Rueda -ligiarueda62@gmail.com; Gustavo A Márquez -piedegus@yahoo.es; Marcos López -marcoslopez@mcw.edu; Daniel J Smith -djs5@uakron.edu; Carlos A Calderón -calderindicor@hotmail.com; Juan C Castillo -juancarcastillo@latinmail.com; Jaime Matute -matutejaime42@yahoo.com; Christian F RuedaClausen -ruedaclausen@gmail.com; Arturo Orduz -aorduz@cable.net.co; Federico A Silva -fsilva5@hotmail.com; Piyaporn Kampeerapappun -st_bernard75@hotmail.com; Mahesh Bhide -maheshswara@yahoo.com; Patricio López-Jaramillo* -jplopezj@hotmail.com * Corresponding author Abstract Background: Diabetes Mellitus constitutes one of the most important public health problems due to its high prevalence and enormous social and economic consequences. Diabetic foot ulcers are one of the chronic complications of diabetes mellitus and constitute the most important cause of non-traumatic amputation of inferior limbs. It is estimated that 15% of the diabetic population will develop an ulcer sometime in their lives. Although novel therapies have been proposed, there is no effective treatment for this pathology. Naturally produced nitric oxide participates in the wound healing process by stimulating the synthesis of collagen, triggering the release of chemotactic cytokines, increasing blood vessels permeability, promoting angiogenic activity, stimulating the release of epidermical growth factors, and by interfering with the bacterial mitochondrial respiratory chain. Topically administered nitric oxide has demonstrated to be effective and safe for the treatment of chronic ulcers secondary to cutaneous leishmaniasis. However, due to their unstable nitric oxide release, the topical donors needed to be applied frequently, diminishing the adherence to the treatment. This difficulty has led to the development of a multilayer polymeric transdermal patch produced by electrospinning technique that guarantees a constant nitric oxide release. The main objective of this study is to evaluate the effectiveness and safety of this novel nitric oxide releasing wound dressing for the treatment of diabetic foot ulcers.
SCOBY bacterial cellulose (BC) is a biological macromolecule (considered as a by-product) that grows at the liquid–air interface during kombucha tea fermentation. In this study, BC:HC (hydrolyzed collagen) blend films coated with 1 wt% chitosan (CS) were loaded with ascorbic acid to study loading/releasing performance. At first, the mechanical properties of the blend films were found to be dependent on HC ratio. After chitosan coating, the coated films were stronger due to intermolecular hydrogen bonding interaction and the miscibility of two matrixes at the interface. The antibacterial activity test according to the AATCC Test Method revealed that chitosan-coated BC/HC films exhibited excellent antimicrobial activity against S.aureus growth from the underneath and the above film when compared to BC and BC:HC films. Moreover, chitosan was attractive to ascorbic acid during drug loading. Consequently, its releasing performance was very poor. For BC:HC blend films, ascorbic acid loading/releasing performance was balanced by water swellability, which was controlled using blending formulation and coating. Another advantage of BC films and BC:HC blend films was that they were able to maintain active ascorbic acid for a long period of time, probably due to the presence of plenty of BC hemiacetal reducing ends (protective group).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.