Diabetes mellitus (DM) is a group of diseases characterized by abnormally high levels of glucose in the blood stream. In developing a potential therapy for diabetic patients, pancreatic cells transplantation has drawn great attention. However, the hinder of cell transplantation for diabetes treatment is insufficient sources of insulin-producing cells. Therefore, new cell based therapy need to be developed. In this regard, human embryonic stem cells (hESCs) may serve as good candidates for this based on their capability of differentiation into various cell types. In this study, we designed a new differentiation protocol that can generate hESC-derived insulin-producing cells (hES-DIPCs) in a hypoxic condition. We also emphasized on the induction of definitive endoderm during embryoid bodies (EBs) formation. After induction of hESCs differentiation into insulin-producing cells (IPCs), the cells obtained from the cultures exhibited pancreas-related genes such as Pdx1, Ngn3, Nkx6.1, GLUT2, and insulin. These cells also showed positive for DTZ-stained cellular clusters and contained ability of insulin secretion in a glucose-dependent manner. After achievement to generated functional hES-DIPCs in vitro, some of the hES-DIPCs were then encapsulated named encapsulated hES-DIPCs. The data showed that the encapsulated cells could possess the function of insulin secretion in a time-dependent manner. The hES-DIPCs and encapsulated hES-DIPCs were then separately transplanted into STZ-induced diabetic mice. The findings showed the significant blood glucose levels regulation capacity and declination of IL-1β concentration in all transplanted mice. These results indicated that both hES-DIPCs and encapsulated hES-DIPCs contained the ability to sustain hyperglycemia condition as well as decrease inflammatory cytokine level in vivo. The findings of this study may apply for generation of a large number of hES-DIPCs in vitro. In addition, the implication of this work is therapeutic value in type I diabetes treatment in the future. The application for type II diabetes treatment remain to be investigated.
Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton's jellyderived mesenchymal stem cells (WJ-MSCs) as compared to typical culture medium for MSCs, Dulbecco's modified Eagle's medium with 1.0 g/l glucose (DMEM-LG) supplemented with 10 % FBS, under hypoxic condition. The expanded cells from ESCM (ESCM-MSCs) and DMEM-LG (DMEM-MSCs) were characterized for both phenotype and biological activities including proliferation rate, population doubling time, cell cycle distribution and MSCs characteristics. ESCM and DMEM-LG could enhance WJ-MSCs proliferation as 204.66 ± 10.39 and 113.77 ± 7.89 fold increase at day 12, respectively. ESCM-MSCs could express pluripotency genes including Oct-4, Oct-3/4, Nanog, Klf-4, C-Myc and Sox-2 both in early and late passages whereas the downregulations of Oct-4 and Nanog were detected in late passage cells of DMEMMSCs. The 2 cell populations also showed common MSCs characteristics including normal cell cycle, fibroblastic morphology, cell surface markers expressions (CD29-) and differentiation capacities into adipogenic, chondrogenic and osteogenic lineages. Moreover, our results revealed that ESCM exhibited as a rich source of several factors which are required for supportive WJMSCs proliferation. In conclusion, ESCM under hypoxic condition could accelerate WJ-MSCs expansion while maintaining their pluripotency properties. Our knowledge provide short term and cost-saving in WJMSCs expansion which has benefit to overcome insufficient cell numbers for clinical applications by reusing the discarded cell culture supernates from human ES culture system. Moreover, these findings can also apply for stem cell banking, regenerative medicine and pharmacological applications.
Diabetes mellitus, a disease with abnormally high level of blood glucose, can cause a wide range of chronic complications that affect almost every parts of the body. The major goal of diabetes treatments is to control elevated blood glucose without causing abnormally low levels of blood glucose. Despite islet transplantation provided endogenous insulin secretion in individuals with diabetes, the scarcity of cadaveric donors for pancreatic β-cell still remains a major obstacle. In this regard, the needs for an unlimited supply for cell replacement strategy have led to explore the way of generating insulin-producing cells to use in the disease treatment. Human embryonic stem cells hESCs offer a source to produce the desired kind of cell. Currently, several researchers achieved insulin-producing cells from hESCs using a multistep differentiation protocols, growth factors, and/or chemical compounds. In this review, we summarized the hESCs derivation, culture methods, and characteristics of hESCs. We also emphasized on the current methods for direct differentiation of hESCs into embryoid bodies EBs and toward insulin-producing cells, characterization of these insulin-producing cells, and the limitation of hESCs. Since the discovery of induced pluripotent stem cells iPSCs , which have similar properties to hESCs but less ethical issues than hESCs, can be created directly from somatic cells that hold great promise as the therapeutic source for developing cell-based therapy. Herein, the methods to produce iPSC-derived insulin-producing cells are also discussed. Moreover, the encapsulation technology which is a powerful tool for accelerate hESCs and iPSCs applications in medicine which provide a new avenue for diabetes treatment in the future is also included in this review. Understanding the basic knowledge of hESCs and iPSCs, their differentiation capability toward insulin-producing cells will stimulate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.