Septic shock represents a subset of sepsis with severe physiological aberrations and a higher mortality rate than sepsis alone. Currently, the laboratory tools which can be used to identify the state of septic shock are limited. In pre-clinical studies, extracellular vesicles (EVs), especially large EVs (lEVs), have been demonstrated a role as functional inflammatory mediators of sepsis. However, its longitudinal trend during the disease course has not been explored. In this study, the quantities and subtypes of plasma-derived lEVs were longitudinally compared between patients with septic shock (n = 21) and non-sepsis infection (n = 9), who presented within 48 h of their symptom onset. Blood specimens were collected for seven consecutive days after hospital admission. lEVs quantification and subtyping were performed using an imaging flow cytometer. The experiments revealed a higher lEVs concentration in septic shock patients than infected patients at the onset of the disease. In septic shock patients, lEVs concentration decreased over time as opposed to infected patients whose lEVs concentration is relatively static throughout the study period. The major contributors of lEVs in both septic shock and infected patients were of non-leukocyte origins; platelets, erythrocytes, and endothelial cells released approximately 40, 25, and 15% of lEVs, respectively. Among lEVs of leukocyte origins, neutrophils produced the highest number of EVs. Nevertheless, the proportion of each subtype of lEVs among the given amount of lEVs produced was similar between septic shock and infected patients. These findings raise the possibility of employing lEVs enumeration as a septic shock identifying tool, although larger studies with a more diverse group of participants are warranted to extrapolate the findings to a general population.
Cervical cancer (CC) is the fourth most common cancer type and a leading cause of cancer-related deaths in women worldwide. Its underlying molecular mechanisms are unclear. Cancer cell-derived extracellular vesicles (EVs) are involved in cancer development and progression by delivering regulatory factors, including microRNAs and long non-coding RNAs (lncRNAs). Here, we identified the EV lncRNA expression profiles associated with different developmental stages of CC using next-generation sequencing. EVs from the serum of patients with stages I–III CC and healthy donors were characterized using EV marker immunoblotting and transmission electron microscopy. The EV concentration increases with progression of the disease. Most particles had a 100–250 nm diameter, and their sizes were similar in all groups. We identified many lncRNAs that were uniquely and differentially expressed (DE) in patients with different stages of CC. The pathway analysis results indicated that the upregulated DE EV lncRNAs abundant in stages I and II were associated with cell proliferation and inflammatory and cancer progression pathways, respectively. LINC00941, LINC01910, LINC02454, and DSG2-AS1 were highly expressed, suggesting poor overall survival of CC patients. Interestingly, DSG2-AS1 was associated with human papillomavirus infection pathway through AKT3, DLG1, and COL6A2 genes. This is the first study that reports the levels of EVs and their lncRNA contents change during cancer development, demonstrating the existence of a unique vesicle-mediated cell-to-cell communication network underlying cancer progression.
Background Small extracellular vesicles (sEVs) are membrane vesicles released by healthy and malignant cells. sEVs are potential biomarkers for cancer diagnosis. Cervical cancer (CC) is the fourth most common cancer in females worldwide. Existing biomarkers, such as squamous cell carcinoma antigens, show low specificity. Hence, a novel biomarker for the diagnosis of CC is required. This study aimed to identify potential candidates in sEVs through proteomic analysis for the diagnosis of CC and to determine the EV protein profile to distinguish between healthy and CC serum samples. Methods The number and size distribution of sEVs in healthy controls (HC) and CC were measured using nanoparticle tracking analysis. Differential ultracentrifugation combined with size-exclusion chromatography was used to isolate and purify sEVs derived from the serum of HC and CC. The isolated sEVs were characterized using western blotting and transmission electron microscopy. Liquid chromatography-tandem mass spectrometry was used to identify and compare the protein profiles between CC and HC. EV proteins were validated using the TCGA database. Results The particle concentration in CC was marginally higher than that in HC. The mode size of the particles in CC was significantly smaller than that in the HC-derived particles. Proteomic and functional protein analyses revealed a difference in the EV protein profiles between HC and CC. We found three and 18 uniquely expressed proteins in HC and CC, respectively. Unique EV proteins in CC are involved in angiogenesis and the Ras, VEGF, and FAS signaling pathways, while EV proteins in HC are involved in cellular homeostasis. EV proteins such as C1QB, MYO3B, and NADSYN1 were significantly upregulated in CC and primary tumor tissues, whereas MAFK, OR13C9, PIK3C2, PLCB4, RAB12, and VIP were downregulated in CC sEVs and primary tumor tissues. Conclusion Our study provides useful insights into the potential of sEVs as noninvasive biomarkers for CC diagnosis. Validation with a well-designed cohort should be performed to assure the clinical diagnostic value of specific protein markers for CC sEVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.