Aims: To study the interaction between Bacillus spp. and contaminating Aspergillus flavus isolated strains from Thai fermented soybean in order to limit aflatoxin production. To study the detoxification of aflatoxin B1 (AFB1) and ochratoxin A (OTA) by Bacillus spp. in order to find an efficient strain to remove these toxins.
Methods and Results: One A. flavus aflatoxin‐producing strain and 23 isolates of Bacillus spp. were isolated from soybean and fresh Thua‐nao collected from the north of Thailand. Inhibition studies of A. flavus and A. westerdijkiae NRRL 3174 (reference strain) growth by all isolates of Bacillus spp. were conducted by dual culture technique on agar plates. These isolates were also tested for AFB1 and OTA detoxification ability on both solid and liquid media. Most of the strains were able to detoxify aflatoxin but only some of them could detoxify OTA.
Conclusions: One Bacillus strain was able to inhibit growth of both Aspergillus strains and to remove both mycotoxins (decrease of 74% of AFB1 and 92·5% of OTA). It was identified by ITS sequencing as Bacillus licheniformis. The OTA decrease was due to degradation in OTα. Another Bacillus strain inhibiting both Aspergillus growth and detoxifying 85% of AFB1 was identified as B. subtilis. AFB1 decrease has not been correlated to appearance of a degradation product.
Significance and Impact of the Study: The possibility to reduce AFB1 level by a strain from the natural flora is of great interest for the control of the quality of fermented soybean. Moreover, the same strain could be a source of efficient enzyme for OTA degradation in other food or feeds.
Metabolic and antiproliferative effects of methylglyoxal bis(butylamidinohydrazone) (MGBB) and methylglyoxal bis(cyclopentylamidinohydrazone) (MGBCP), inhibitors for polyamine biosynthetic pathway, on Escherichia coli, Shigella sonnei, Aeromonas sobria, Aeromonas hydrophila and Vibrio cholerae were investigated. MGBB at the concentration of 100 mumol/l depleted intracellular putrescine and spermidine concentrations of E. coli to 25 and 20% of the controls, respectively, while MGBCP depressed their concentrations to 38 and 24%, respectively. In these polyamine-depleted E. coli cells the syntheses of RNA, DNA and protein decreased to 13, 54 and 29% of the control, respectively, with MGBB and to 23, 71 and 55%, respectively, with MGBCP. The minimum inhibitory concentrations (MIC) of MGBB for the growth of A. sobria, E. coli, A. hydrophila, V. cholerae and Sh. sonnei were estimated to be 50, 160, 240, 285 and 320 mumol/l, respectively, whereas those of MGBCP were slightly higher for respective bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.