In this paper, we describe our EnglishHindi and Hindi-English statistical systems submitted to the WMT14 shared task. The core components of our translation systems are phrase based (Hindi-English) and factored (English-Hindi) SMT systems. We show that the use of number, case and Tree Adjoining Grammar information as factors helps to improve English-Hindi translation, primarily by generating morphological inflections correctly. We show improvements to the translation systems using pre-procesing and post-processing components. To overcome the structural divergence between English and Hindi, we preorder the source side sentence to conform to the target language word order. Since parallel corpus is limited, many words are not translated.We translate out-of-vocabulary words and transliterate named entities in a post-processing stage. We also investigate ranking of translations from multiple systems to select the best translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.