Peste-des-petits-ruminants
is a highly contagious and fatal disease of goats and sheep caused by non-segmented, negative strand RNA virus belonging to the
Morbillivirus
genus—
Peste-des-petits-ruminants virus
(PPRV) which is evolutionarily closely related to
Rinderpest virus
(RPV). The large protein ‘L’ of the members of this genus is a multifunctional catalytic protein, which transcribes and replicates the viral genomic RNA as well as possesses mRNA capping, methylation and polyadenylation activities; however, the detailed mechanism of mRNA capping by PPRV L protein has not been studied. We have found earlier that the L protein of RPV has RNA triphosphatase (RTPase), guanylyltransferase (GTase) and methyltransferase activities, and unlike vesicular stomatitis virus (VSV), follows the conventional pathway of mRNA capping. In the present work, using a 5′-end labelled viral RNA as substrate, we demonstrate that PPRV L protein has RTPase activity when present in the ribonucleoprotein complex of purified virus as well as recombinant L–P complex expressed in insect cells. Further, a minimal domain in the C-terminal region (aa1640–1840) of the L protein has been expressed in
E. coli
and shown to exhibit RTPase activity. The RTPase activity of PPRV L protein is metal-dependent and functions with a divalent cation, either magnesium or manganese. In addition, RTPase associated nucleotide triphosphatase activity (NTPase) of PPRV L protein is also demonstrated. This work provides the first detailed study of RTPase activity and identifies the RTPase domain of PPRV L protein.
L protein of the Rinderpest virus, an archetypal paramyxovirus possesses RNA-dependent RNA polymerase activity which transcribes the genome into mRNAs as well as replicates the RNA genome. The protein also possesses RNA triphosphatase (RTPase), guanylyltransferase (GTase) and methyltransferase enzyme activities responsible for capping the mRNAs in a conventional pathway similar to that of the host pathway. Subsequent to the earlier characterization of the GTase activity of L protein and identification of the RTPase domain of the L protein, we report here, additional enzymatic activities associated with the RTPase domain. We have characterized the pyrophosphatase and tripolyphosphatase activities of the L-RTPase domain which are metal-dependent and proceed much faster than the RTPase activity. Interestingly, the mutant proteins E1645A and E1647A abrogated the pyrophosphatase and tripolyphosphatase significantly, indicating a strong overlap of the active sites of these activities with that of RTPase. We discuss the likely role of GTase-associated L protein pyrophosphatase in the polymerase function. We also discuss a possible biological role for the tripolyphosphatase activity hitherto considered insignificant for the viruses possessing such activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.