In the parameter estimation of limit extreme value distributions, most employed methods only use some of the available data. Using the peaks-over-threshold method for Generalized Pareto Distribution (GPD), only the observations above a certain threshold are considered; therefore, a big amount of information is wasted. The aim of this work is to make the most of the information provided by the observations in order to improve the accuracy of Bayesian parameter estimation. We present two new Bayesian methods to estimate the parameters of the GPD, taking into account the whole data set from the baseline distribution and the existing relations between the baseline and the limit GPD parameters in order to define highly informative priors. We make a comparison between the Bayesian Metropolis–Hastings algorithm with data over the threshold and the new methods when the baseline distribution is a stable distribution, whose properties assure we can reduce the problem to study standard distributions and also allow us to propose new estimators for the parameters of the tail distribution. Specifically, three cases of stable distributions were considered: Normal, Lévy and Cauchy distributions, as main examples of the different behaviors of the tails of a distribution. Nevertheless, the methods would be applicable to many other baseline distributions through finding relations between baseline and GPD parameters via studies of simulations. To illustrate this situation, we study the application of the methods with real data of air pollution in Badajoz (Spain), whose baseline distribution fits a Gamma, and show that the baseline methods improve estimates compared to the Bayesian Metropolis–Hastings algorithm.
A Bayesian hierarchical framework with a Gaussian copula and a generalized extreme value (GEV) marginal distribution is proposed for the description of spatial dependencies in data. This spatial copula model was applied to extreme summer temperatures over the Extremadura Region, in the southwest of Spain, during the period 1980–2015, and compared with the spatial noncopula model. The Bayesian hierarchical model was implemented with a Monte Carlo Markov Chain (MCMC) method that allows the distribution of the model’s parameters to be estimated. The results show the GEV distribution’s shape parameter to take constant negative values, the location parameter to be altitude dependent, and the scale parameter values to be concentrated around the same value throughout the region. Further, the spatial copula model chosen presents lower deviance information criterion (DIC) values when spatial distributions are assumed for the GEV distribution’s location and scale parameters than when the scale parameter is taken to be constant over the region.
Usual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an extreme value framework. The key is to take advantage of the existing relation between the baseline parameters and the parameters of the block maxima distribution. We propose two methods to perform Bayesian estimation. Baseline distribution method (BDM) consists in computing estimations for the baseline parameters with all the data, and then making a transformation to compute estimations for the block maxima parameters. Improved baseline method (IBDM) is a refinement of the initial idea, with the aim of assigning more importance to the block maxima data than to the baseline values, performed by applying BDM to develop an improved prior distribution. We compare empirically these new methods with the Standard Bayesian analysis with non-informative prior, considering three baseline distributions that lead to a Gumbel extreme distribution, namely Gumbel, Exponential and Normal, by a broad simulation study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.