Sorghum is an important source of food, feed, and biofuel, especially in the semi-arid tropics because this cereal is well adapted to harsh, drought-prone environments. Post-flowering drought adaptation in sorghum is associated with the stay-green phenotype. Alleles that contribute to this complex trait have been mapped to four major QTL, Stg1-Stg4, using a population derived from BTx642 and RTx7000. Near-isogenic RTx7000 lines containing BTx642 DNA spanning one or more of the four stay-green QTL were constructed. The size and location of BTx642 DNA regions in each RTx7000 NIL were analysed using 62 DNA markers spanning the four stay-green QTL. RTx7000 NILs were identified that contained BTx642 DNA completely or partially spanning Stg1, Stg2, Stg3, or Stg4. NILs were also identified that contained sub-portions of each QTL and various combinations of the four major stay-green QTL. Physiological analysis of four RTx7000 NILs containing only Stg1, Stg2, Stg3, or Stg4 showed that BTx642 alleles in each of these loci could contribute to the stay-green phenotype. RTx7000 NILs containing BTx642 DNA corresponding to Stg2 retained more green leaf area at maturity under terminal drought conditions than RTx7000 or the other RTx7000 NILs. Under post-anthesis water deficit, a trend for delayed onset of leaf senescence compared with RTx7000 was also exhibited by the Stg2, Stg3, and Stg4 NILs, while significantly lower rates of leaf senescence in relation to RTx7000 were displayed by all of the Stg NILs to varying degrees, but particularly by the Stg2 NIL. Greener leaves at anthesis relative to RTx7000, indicated by higher SPAD values, were exhibited by the Stg1 and Stg4 NILs. The RTx7000 NILs created in this study provide the starting point for in-depth analysis of stay-green physiology, interaction among stay-green QTL and map-based cloning of the genes that underlie this trait.
Drought is a major abiotic stress factor limiting crop production. Identification of genetic factors involved in plant responses to drought stress will provide a solid foundation to improve drought resistance. Sorghum is well adapted to hot dry environments and regarded as a model for studying drought resistance among the grasses. Significant progress in genome mapping of this crop has also been made. In sorghum, rapid premature leaf death generally occurs when water is limited during the grain filling period. Premature leaf senescence, in turn, leads to charcoal rot, stalk lodging, and significant yield loss. More than 80% of commercial sorghum hybrids in the United States are grown under non-irrigated conditions and although most of them have pre-flowering drought resistance, many do not have any significant post-flowering drought resistance. Stay-green is one form of drought resistance mechanism, which gives sorghum resistance to premature senescence under soil moisture stress during the post-flowering period. Quantitative trait locus (QTL) studies with recombinant inbred lines (RILs) and near-isogenic lines (NILs) identified several genomic regions associated with resistance to pre-flowering and post-flowering drought stress. We have identified four genomic regions associated with the stay-green trait using a RIL population developed from B35 x Tx7000. These four major stay-green QTLs were consistently identified in all field trials and accounted for 53.5% of the phenotypic variance. We review the progress in mapping stay-green QTLs as a component of drought resistance in sorghum. The molecular genetic dissection of the QTLs affecting stay-green will provide further opportunities to elucidate the underlying physiological mechanisms involved in drought resistance in sorghum and other grasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.