Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is one the most frequent genetic events in human cancer. A cell-based imaging assay that monitored the translocation of the Akt effector protein, Forkhead box O (FOXO), from the cytoplasm to the nucleus was employed to screen a collection of 33,992 small molecules. The positive compounds were used to screen kinases known to be involved in FOXO translocation. Pyrazolopyrimidine derivatives were found to be potent FOXO relocators as well as biochemical inhibitors of PI3K␣. A combination of virtual screening and molecular modeling led to the development of a structure-activity relationship, which indicated the preferred substituents on the pyrazolopyrimidine scaffold. This leads to the synthesis of ETP-45658, which is a potent and selective inhibitor of phosphoinositide 3-kinases and demonstrates mechanism of action in tumor cell lines and in vivo in treated mice.The phosphoinositide 3-kinase (PI3K) 4 /Akt pathway is activated in a variety of solid and non-solid tumors (1) and therefore is considered as a potential intervention point for anticancer therapeutics. Activation of the pathway is frequently caused by mutations in PI3K␣ that enhance its catalytic activity, leading to the generation of phosphatidyl 3,4,5-trisphosphate (PIP3) (2) or by mutations or deletions in the tumor suppressor PTEN (phosphatase and tensin homolog) that result in its loss of function. PTEN antagonizes the activity of PI3K␣ through the dephosphorylation PIP3 (3). In addition, PI3K␣ can be activated by mutations in certain receptor-tyrosine kinases as well as by mutations in the oncogene KRAS (4, 5).The PIP3 generated by activation of PI3K␣ or sustained by the inactivation of PTEN binds to a subset of lipid-binding domains in downstream targets such as the pleckstrin homology (PH) domain of the oncogene Akt (6, 7); thereby, recruiting it to the plasma membrane. Once at the plasma membrane, Akt can be activated (8, 9). When active, Akt phosphorylates several effector molecules including the Forkhead box O (FOXO) transcription factors (10, 11). FOXO proteins are a family of conserved polypeptides that bind to DNA as a monomer and activate the transcription of genes that are involved in numerous biologically relevant processes such as metabolism, differentiation, proliferation, longevity, and apoptosis (12, 13). Akt phosphorylates FOXO proteins at three conserved consensus sites, which leads to conformational changes that facilitate CRM-1-mediated nuclear export (14, 15). Nuclear FOXO proteins function as regulators of transcription, whereas cytoplasmic FOXO proteins are considered inactive. It is well established that FOXO is negatively regulated by various proliferative and antiapoptotic signaling pathways that activate the PI3K/Akt signaling cascade (11). Therefore, we chose to employ a high content imaging approach to monitor the nucleocytoplasmic translocation of a GFP-FOXO3a fusion protein in U2OS cells (U2foxRELOC) (16,17) as the readout for biological inhibition...