This paper is devoted to the study of the class of continuous and bounded functions f : [0, ∞) → X for which exists ω > 0 such that lim t→∞ (f (t + ω) − f (t)) = 0 (in the sequel called S-asymptotically ω-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically ω-periodic functions. We also study the existence of S-asymptotically ω-periodic mild solutions of the first-order abstract Cauchy problem in Banach spaces.
SynopsisWe study the planar delay differential equation x′(t) = −x(t) + αF(x(t − 1)), for α > 0. An existence theorem for nonconstant periodic solutions is achieved for a certain class of maps F, for α > some α0. Besides a condition of nondegeneracy at x = 0, we assume F is bounded and satisfies a kind of planar negative feedback condition. The nonconstant periodic solutions are associated with nontrivial fixed points of a certain operator defined by the flow in the plase space C([−l, 0], R2). In our approach, the existence of such fixed points depends on the ejectivity of O ϵ C([−1, 0], R2) with respect to that operator. Relaxing the boundedness condition on F, we show the existence of a sequence of values of α, α0 < α1 <…, where a Hopf bifurcation occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.