Great strides have been made in developing potent antiretroviral regimens that block human immunodeficiency virus (HIV) transcription and assembly. Despite these therapeutic advances, problems of drug resistance, latent viral reservoirs, and drug-induced toxic effects that compromise effective viral control point to the need for new classes of anti-HIV drugs with different modes of action. One promising approach involves blocking HIV entry into human cells, a complex process that involves multiple protein interactions. The process of HIV entry begins with binding of the viral envelope glycoprotein to both the CD4 receptor and one of several chemokine receptors and ends with fusion of viral and cell membranes. Conceptually, there are 3 steps in the HIV entry process that could serve as therapeutic targets: binding of the viral envelope glycoprotein with the CD4 receptor, binding of the envelope-CD4 complex to chemokine receptors, and fusion of the viral and cell membranes. Preclinical and clinical assessment of these entry inhibitors is ongoing and will determine if they possess properties required for drug licensure. Moreover, the worldwide epidemic is largely occurring in developing countries that cannot afford these drugs: a prophylactic vaccine is necessary and urgent. New knowledge of the HIV-envelope glycoprotein has also provided insight into possibilities for the design of novel HIV vaccines. JAMA. 2000;284:215-222
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.