Intrusion Detection System (IDS) is a tool for anomaly detection in network that can help to protect network security. At present, intrusion detection systems have been developed to prevent attacks with accuracy. In this paper, we concentrate on ensemble learning for detecting network intrusion data, which are difficult to detect. In addition, correlation-based algorithm is used for reducing some redundant features. Adaboost algorithm is adopted to create the ensemble of weak learners in order to create the model that can protect the security and improve the performance of classifiers. The U2R and R2L attacks in KDD Cup'99 intrusion detection dataset are used to train and test the ensemble classifiers. The experimental results show that reducing features can improve efficiency in attack detection of classifiers in many weak leaners.
Heart failure is a very common disease, often a silent threat. It's also costly to treat and detect. There is also a steadily higher incidence rate of the disease at present. Although researchers have developed classification algorithms. Cardiovascular disease data were used by various ensemble learning methods, but the classification efficiency was not high enough due to the cumulative error that can occur from any weak learner effect and the accuracy of the vote-predicted class label. The objective of this research is the development of a new algorithm that improves the efficiency of the classification of patients with heart failure. This paper proposes Least Error Boosting (LEBoosting), a new algorithm that improves adaboost.m1's performance for higher classification accuracy. The learning algorithm finds the lowest error among various weak learners to be used to identify the lowest possible errors to update distribution to create the best final hypothesis in classification. Our trial will use the heart failure clinical records dataset, which contains 13 features of cardiac patients. Performance metrics are measured through precision, recall, f-measure, accuracy, and the ROC curve. Results from the experiment found that the proposed method had high performance compared to naïve bayes, k-NN,and decision tree, and outperformed other ensembles including bagging, logitBoost, LPBoost, and adaboost.m1, with an accuracy of 98.89%, and classified the capabilities of patients who died accurately as well compared to decision tree and bagging, which were completely indistinguishable. The findings of this study found that LEBoosting was able to maximize error reductions in the weak learner's training process from any weak learner to maximize the effectiveness of cardiology classifiers and to provide theoretical guidance to develop a model for analysis and prediction of heart disease. The novelty of this research is to improve original ensemble learning by finding the weak learner with the lowest error in order to update the best distribution to the final hypothesis, which will give LEBoosting the highest classification efficiency. Doi: 10.28991/ESJ-2023-07-01-010 Full Text: PDF
A cyber-attack detection is currently essential for computer network protection. The fundamentals of protection are to detect cyber-attack effectively with the ability to combat it in various ways and with constant data learning such as internet traffic. With these functions, each cyber-attack can be memorized and protected effectively any time. This research will present procedures for a cyber-attack detection system Incremental Decision Tree Learning (IDTL) that use the principle through Incremental Linear Discriminant Analysis (ILDA) together with Mahalanobis distance for classification of the hierarchical tree by reducing data features that enhance classification of a variety of malicious data. The proposed model can learn a new incoming datum without involving the previous learned data and discard this datum after being learned. The results of the experiments revealed that the proposed method can improve classification accuracy as compare with other methods. They showed the highest accuracy when compared to other methods. If comparing with the effectiveness of each class, it was found that the proposed method can classify both intrusion datasets and other datasets efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.