Control of intermolecular interactions is crucial to the exploitation of molecular semiconductors for both organic electronics and the viable manipulation and incorporation of single molecules into nano-engineered devices. Here we explore the properties of a class of materials that are engineered at a supramolecular level by threading a conjugated macromolecule, such as poly(para-phenylene), poly(4,4'-diphenylene vinylene) or polyfluorene through alpha- or beta-cyclodextrin rings, so as to reduce intermolecular interactions and solid-state packing effects that red-shift and partially quench the luminescence. Our approach preserves the fundamental semiconducting properties of the conjugated wires, and is effective at both increasing the photoluminescence efficiency and blue-shifting the emission of the conjugated cores, in the solid state, while still allowing charge-transport. We used the polymers to prepare single-layer light-emitting diodes with Ca and Al cathodes, and observed blue and green emission. The reduced tendency for polymer chains to aggregate allows solution-processing of individual polyrotaxane wires onto substrates, as revealed by scanning force microscopy.
Two-photon absorption spectra (2PA) of a series of conjugated dimers and the corresponding monomer were studied in the near-IR region. All of the dimers show very large peak cross section values, sigma(2) = (3-10) x 10(3) GM (1 GM = 1 x 10(-50) cm(4) s photon(-1)), which is several hundred times larger than that obtained for the corresponding monomer in the same region. We explain such dramatic cooperative enhancement by a combination of several factors, such as strong enhancement of the lowest one-photon Q-transition, better resonance conditions in the three-level system, dramatic enhancement of the excited-state singlet-singlet transition, and parallel arrangement of consecutive transitions in dimers, as compared to perpendicular arrangement in the monomer. We show that the absolute values of the 2PA cross section in these molecules are quantitatively described by a quantum-mechanical expression, derived for the three-level model. We also demonstrate the possibility of singlet oxygen generation upon one- and two-photon excitation of these dimers, which makes them particularly attractive for photodynamic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.