A primary goal of systems biology is to understand the design principles of the transcription networks that govern the timing of gene expression 1-5 . Here we measured promoter activity for ∼100 genes in parallel from living cells at a resolution of minutes and accuracy of 10%, based on GFP and Lux reporter libraries 3 . Focusing on the amino-acid biosynthesis systems of Escherichia coli 4 , we identified a previously unknown temporal expression program and expression hierarchy that matches the enzyme order in unbranched pathways. We identified two design principles: the closer the enzyme is to the beginning of the pathway, the shorter the response time of the activation of its promoter and the higher its maximal promoter activity. Mathematical analysis suggests that this 'just-in-time' (ref. 5) transcription program is optimal under constraints of rapidly reaching a production goal with minimal total enzyme production 6,7 . Our findings suggest that metabolic regulation networks are designed to generate precision promoter timing and activity programs that can be understood using the engineering principles of production pipelines.Amino-acid biosynthesis (AAB) in E. coli is carried out by well-characterized enzymatic pathways 4,6-11 . The genes encoding these enzymes are governed by a transcriptional regulatory network 12,13 , which is an excellent model system for studying the design principles of metabolic regulation. To study the dynamics of transcription of AAB genes at high temporal resolution and accuracy, we constructed a library of 52 reporter strains that represent ∼50% of known AAB genes. We designed each reporter strain by cloning one of the promoter regions of E. coli K-12 MG1655 upstream of a Lux or a fast-folding GFP reporter gene (Fig. 1a). We measured promoter activity with a high temporal resolution by measuring fluorescence, luminescence and absorbance from 96 cultures in parallel in a multiwell fluorimeter 3,14 .
Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of 125I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 X 10(12) binding sites/mm2 ECM with an apparent kD of 610nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 micrograms/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 micrograms/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descemet's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.
Despite the ubiquitous presence of basic fibroblast growth factor (bFGF) in normal tissues, endothelial cell proliferation in these tissues is usually very low, suggesting that bFGF is somehow sequestered from its site of action. Immunohistochemical staining revealed the localization of bFGF in basement membranes of diverse tissues, suggesting that the extracellular matrix (ECM) may serve as a reservoir for bFGF. Moreover, functional studies indicated that bFGF is an ECM component required for supporting endothelial cell proliferation and neuronal differentiation. We have found that bFGF is bound to heparan sulfate (HS) in the ECM and is released in an active form when the ECM-HS is degraded by heparanase expressed by normal and malignant cells (i.e. platelets, neutrophils, lymphoma cells). It is proposed that restriction of bFGF bioavailability by binding to ECM and local regulation of its release provide a novel mechanism for neovascularization in normal and pathological situations. The subendothelial ECM contains also tissue type- and urokinase type-plasminogen activators which participate in cell invasion and tissue remodeling. These results and studies on the properties of other ECM-immobilized enzymes (i.e. thrombin, plasmin, lipoprotein lipase) and growth factors (GM-CSF, IL-3, osteogenin), suggest that the ECM provides a storage depot for biologically active molecules which are thereby stabilized and protected. This may allow a more localized and persistent mode of action, as compared to the same molecules in a fluid phase.
Neoplastic cells require an appropriate pericellular environment and new formation of stroma and blood vessels in order to constitute a solid tumor. Tumor progression also involves degradation of various extracellular matrix (ECM) constituents. In this review we have focused on the possible involvement of ECM-resident growth factors and enzymes in neovascularization and cell invasion. We demonstrate that the pluripotent angiogenic factor, basic fibroblast growth factor (bFGF) is an ECM component required for supporting cell proliferation and differentiation. Basic FGF has been identified in the subendothelial ECM produced in vitro and in basement membranes of the cornea and blood vessels in vivo. Despite the ubiquitous presence of bFGF in normal tissues, endothelial cell (EC) proliferation in these tissues is usually very low, suggesting that bFGF is somehow sequestered from its site of action. Our results indicate that bFGF is bound to heparan sulfate (HS) in the ECM and is released in an active form when the ECM-HS is degraded by cellular heparanase. We propose that restriction of bFGF bioavailability by binding to ECM and local regulation of its release, provides a novel mechanism for regulation of capillary blood vessel growth in normal and pathological situations. Heparanase activity correlates with the metastatic potential of various tumor cells and heparanase inhibiting molecules markedly reduce the incidence of lung metastasis in experimental animals. Heparanase may therefore participate in both tumor cell invasion and angiogenesis through degradation of the ECM-HS and mobilization of ECM-resident EC growth factors. The subendothelial ECM contains also tissue type- and urokinase type- plasminogen activators (PA), as well as PA inhibitor which may regulate cell invasion and tissue remodeling. Heparanase and the ECM-resident PA participate synergistically in sequential degradation of HS-proteoglycans in the ECM. These results together with similar observations on the properties of other ECM-immobilized enzymes and growth factors, suggest that the ECM provides a storage depot for biologically active molecules which are thereby stabilized and protected. This may allow a more localized, regulated and persistent mode of action, as compared to the same molecules in a fluid phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.