A study of the binding of the antibacterial agent trimethoprim to Escherichia coli dihydrofolate reductase was carried out using energy minimization techniques with both a full, all-atom valence force field and a united atom force field. Convergence criteria ensured that no significant structural or energetic changes would occur with further minimization. Root-mean-square (RMS) deviations of both minimized structures with the experimental structure were calculated for selected regions of the protein. In the active site, the all-atom minimized structure fit the experimental structure much better than did the united atom structure. To ascertain what constitutes a good fit, the RMS deviations between crystal structures of the same enzyme either from different species or in different crystal environments were compared. The differences between the active site of the all-atom minimized structure and the experimental structure are similar to differences observed between crystal structures of the same protein. Finally, the energetics of ligand binding were analyzed for the all-atom minimized coordinates. Strain energy induced in the ligand, the corresponding entropy loss due to shifts in harmonic frequencies, and the role of specific residues in ligand binding were examined. Water molecules, even those not in direct contact with the ligand, were found to have significant interaction energies with the ligand. Thus, the inclusion of at least one shell of waters may be vital for accurate simulations of enzyme complexes.
A theoretical methodology for use in conjunction with experiment was applied to the neurohypophyseal hormone lysine vasopressin for elucidation of its accessible molecular conformations and associated flexibility, conformational transitions, and dynamics. Molecular dynamics and energy minimization techniques make possible a description of the conformational properties of a peptide in terms of the precise positions of atoms, their fluctuations in time, and the interatomic forces acting on them. Analysis of the dynamic trajectory of lysine vasopressin shows the ability of a flexible peptide hormone to undergo spontaneous conformational transitions. The excursions of an individual phenylalanine residue exemplify the dynamic flexibility and multiple conformational states available to small peptide hormones and their component residues, even within constraints imposed by a cyclic hexapeptide ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.