It is generally acknowledged that humans display highly variable sensitivity to pain, including variable responses to identical injuries or pathologies. The possible contribution of genetic factors has, however, been largely overlooked. An emerging rodent literature documents the importance of genotype in mediating basal nociceptive sensitivity, in establishing a predisposition to neuropathic pain following neural injury, and in determining sensitivity to pharmacological agents and endogenous antinociception. One clear finding from these studies is that the effect of genotype is at least partially specific to the nociceptive assay being considered. In this report we begin to systematically describe and characterize genetic variability of nociception in a mammalian species, Mus musculus. We tested 11 readily-available inbred mouse strains (129/J, A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, C58/J, CBA/J, DBA/2J, RIIIS/J and SM/J) using 12 common measures of nociception. These included assays for thermal nociception (hot plate, Hargreaves' test, tail withdrawal), mechanical nociception (von Frey filaments), chemical nociception (abdominal constriction, carrageenan, formalin), and neuropathic pain (autotomy, Chung model peripheral nerve injury). We demonstrate the existence of clear strain differences in each assay, with 1.2 to 54-fold ranges of sensitivity. All nociceptive assays display moderate-to-high heritability (h2 = 0.30-0.76) and mediation by a limited number of apparent genetic loci. Data comparing inbred strains have considerable utility as a tool for understanding the genetics of nociception, and a particular relevance to transgenic studies.
Clinical pain syndromes, and experimental assays of nociception, are differentially affected by manipulations such as drug administration and exposure to environmental stress. This suggests that there are different 'types' of pain. We exploited genetic differences among inbred strains of mice in an attempt to define these primary 'types'; that is, to identify the fundamental parameters of pain processing. Eleven randomly-chosen inbred mouse strains were tested for their basal sensitivity on 12 common measures of nociception. These measures provided for a range of different nociceptive dimensions including noxious stimulus modality, location, duration and etiology, among others. Since individual members of inbred strains are identical at all genetic loci, the observation of correlated strain means in any given pair of nociceptive assays is an index of genetic correlation between these assays, and hence an indication of common physiological mediation. Obtained correlation matrices were subjected to multivariate analyses to identify constellations of nociceptive assays with common genetic mediation. This analysis revealed three major clusters of nociception: (1) baseline thermal nociception, (2) spontaneously-emitted responses to chemical stimuli, and (3) baseline mechanical sensitivity and cutaneous hypersensitivity. Many other nociceptive parameters that might a priori have been considered closely related proved to be genetically divergent.
Some injured sensory fibers ending in an experimental neuroma in the rat sciatic nerve discharge spontaneously. Furthermore, many become sensitive to a range of physical and chemical stimuli. The resulting afferent barrage is thought to contribute to paresthesias and pain associated with peripheral nerve injury. We report that the development of such ectopic neuroma discharge is largely prevented when the freshly cut nerve end is treated with any of 3 commercially available corticosteroid preparations including two in depot form, triamcinolone hexacetonide (Lederspan) and triamcinolone diacetate (Ledercort), and one in soluble form, dexamethasone (Dexacort). These corticosteroids also produce a rapid and prolonged suppression of ongoing discharge in chronic neuromas that have already become active. The kinetics of corticosteroid suppression of neuroma discharge suggest a direct membrane action rather than an anti-inflammatory action.
Cutting spinal nerves just distal to the dorsal root ganglion (DRG) triggers, with rapid onset, massive spontaneous ectopic discharge in axotomized afferent A-neurons, and at the same time induces tactile allodynia in the partially denervated hindlimb. We show that secondary transection of the dorsal root (rhizotomy) of the axotomized DRG, or suppression of the ectopia with topically applied local anesthetics, eliminates or attenuates the allodynia. Dorsal rhizotomy alone does not trigger allodynia. These observations support the hypothesis that ectopic firing in DRG A-neurons induces central sensitization which leads to tactile allodynia. The question of how activity in afferent A-neurons, which are not normally nociceptive, might induce allodynia is discussed in light of the current literature.
This study was aimed at measuring the kinetics of retrograde death among primary sensory neurons axotomized by transection of the ipsilateral sciatic nerve in adult rats. Using electrophysiological and retrograde transport methods, we first determined that most sciatic afferents enter the spinal cord along the L4 and L5 dorsal roots (DRs), and that about 54% of the cells in the L4 and L5 dorsal root ganglia (DRGs) project an axon into the sciatic nerve. Knowing this value, we could then calculate the rate of loss of axotomized neurons from the overall rate of neuron loss in the DRGs at different times after the lesion. Following unilateral sciatic neurectomy, we found a steady falloff in the ratio of DRG neurons on the operated versus the intact control sides in cresyl-violet-stained serial paraffin sections. We were surprised to note, however, that on the control side there was a steady increase in the cell count with age. Counts done on a series of unoperated rats of various ages confirmed this natural increase. Overall, new neurons accrete at an average rate of 18.1 cells per day to the combined L4 and L5 DRGs, nearly doubling their numbers during the adult life of the animal. The new cells add mostly to the small-diameter neuronal compartment. Evidence from neonatally operated rats indicates that the decline in the ratio of neurons in operated versus control DRGs following sciatic nerve section in the adult results more from a halt in the accretion of new neurons to the sciatic compartment than from frank cell death. From our data, we calculate that the loss of axotomized neurons occurs at a rate of only about 8% per 100 postoperative days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.