A novel class of low molecular weight protein tyrosine kinase inhibitors is described. These compounds constitute a systematic series of molecules with a progressive increase in affinity toward the substrate site of the EGF receptor kinase domain. These competitive inhibitors also effectively block the EGF-dependent autophosphorylation of the receptor. The potent EGF receptor kinase blockers examined were found to competitively inhibit the homologous insulin receptor kinase at 10(2)-10(3) higher inhibitor concentrations in spite of the significant homology between these protein tyrosine kinases. These results demonstrate the ability to synthesize selective tyrosine kinase inhibitors. The most potent EGF receptor kinase inhibitors also inhibit the EGF-dependent proliferation of A431/clone 15 cells with little or no effect on EGF independent cell growth. These results demonstrate the potential use of protein tyrosine kinase inhibitors as selective antiproliferative agents for proliferative diseases caused by the hyperactivity of protein tyrosine kinases. We have suggested the name "tyrphostins" for this class of antiproliferative compounds which act as protein tyrosine kinase blockers.
A systematic series of low molecular weight protein tyrosine kinase inhibitors were synthesized; they had progressively increasing affinity over a 2500-fold range toward the substrate site of epidermal growth factor (EGF) receptor kinase domain. These compounds inhibited EGF receptor kinase activity up to three orders of magnitude more than they inhibited insulin receptor kinase, and they also effectively inhibited the EGF-dependent autophosphorylation of the receptor. The most potent compounds effectively inhibited the EGF-dependent proliferation of A431/clone 15 cells with little or no effect on the EGF-independent proliferation of these cells. The potential use of tyrosine protein kinase inhibitors as antiproliferative agents is demonstrated.
We have previously described a novel series of low molecular weight protein tyrosine kinase inhibitors which we named tyrphostins. The characteristic active pharmacophore of these compounds was the hydroxy-cis-benzylidenemalononitrile moiety. In this article we describe three novel groups of tyrphostins: (i) one group has the phenolic moiety of the cis-benzylidenemalononitrile replaced either with other substituted benzenes or with heteroaromatic rings, (ii) another is a series of conformationally constrained derivatives of hydroxy-cis-benzylidenemalononitriles in which the malononitrile moiety is fixed relative to the aromatic ring, and (iii) two groups of compounds in which the position trans to the benzenemalononitrile has been substituted by ketones and amides. Among the novel tyrphostins examined we found inhibitors which discriminate between the highly homologous EGF receptor kinase (HER1) and ErbB2/neu kinase (HER2). These findings may lead to selective tyrosine kinase blockers for the treatment of diseases in which ErbB2/neu is involved.
Protein tyrosine kinase (PTK) blockers which competitively inhibit the kinase activity of insulin receptors were synthesized and their properties examined. The best insulin receptor kinase (IRK) inhibitors possess either one hydroxyphenyl ring and two carboxyl groups or two phenyl rings and one carboxyl group. All the inhibitors, except tBoc‐tyrosine aminomalonate, effectively block the IRK‐catalyzed phosphorylation of exogenous substrate, but only partially block receptor autophosphorylation. These PTK blockers inhibit the insulin induced [14C]glucose assimilation into lipids (lipogenesis), but fail to inhibit the anti‐lipolytic effect of the hormone. Only tBocTyr‐aminomalonate was found to inhibit all the effects of insulin measured: insulin‐stimulated phosphorylation of exogenous substrate, IRK autophosphorylation, insulin‐dependent lipogenesis and the insulin‐dependent anti‐lipolytic effect. This inhibitor is the first blocker which is reported to block insulin‐dependent anti‐lipolysis. The inhibitors examined are devoid of general adverse effects since they have no effect on insulin‐independent lipolysis, on [U14C]fructose assimilation or on (‐)isoproterenol‐stimulated lipolysis. These studies suggest that insulin‐dependent lipogenesis and anti‐lipolysis may be mediated by two distinguishable signalling pathways. This study also suggests that PTK inhibitors may become useful tools in the investigation of the signalling pathways of PTKs.
Receptor-linked phosphatidylinositol (PtdIns) 3-kinase may generate a second-messenger signal. Here a large-scale purification of the bovine brain enzyme, based on methods developed by Morgan, Smith and Parker [(1990) Eur. J. Biochem. 191, 761-767] and Fry, Panayotou, Dhand, Ruiz-Larrea, Gout, Nguyen, Courtneidge and Waterfield [(1992) Biochem. J. 288, 383-393] is described. The purified enzyme is shown to be a heterodimer of 85 kDa and 110 kDa protein subunits (p85 and p110). Labelling with 5'-p-fluorosulphonylbenzoyladenosine shows that p110 contains an ATP-binding site and confers catalytic activity to the complex. The purified complex is known to be highly phosphorylated on both p85 alpha and p110 subunits, and dephosphorylation generates a deactivated complex, indicating that phosphorylation is an important covalent modification of the complex and may modulate PtdIns 3-kinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.