The multimeric plasma glycoprotein von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand Disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet glycoprotein (GP)IIb/IIIa-dependent prothrombotic gain-of-function (GOF) for variant p.Pro2555Arg, located in the C4-domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small angle X-ray scattering, NMR spectroscopy, molecular dynamics simulations on the single C4-domain and dimeric wildtype and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF is not affecting the binding affinity of the C4-domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and show a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but which is not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4-domain as a novel anti-thrombotic drug target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.