Graphene-supported Pt nanoparticles were prepared by a self-regulated reduction method without using any extra reductive agent. Unassisted reduction of Pt ions by the oxygen-containing functional groups on graphene was demonstrated. X-ray diffraction (XRD) showed a (200) peak of face-centered cubic Pt crystals and energy dispersive X-ray spectroscopy (EDS) further confirmed the presence of Pt. Transmission electron microscopy (TEM) depicted good dispersion of the Pt nanoparticles on graphene. The particle sizes estimated by TEM and XRD ranged from 2 to 6 nm. In comparison, the Pt nanoparticles reduced using ethylene glycol as an extra reducing agent exhibited larger sizes, a wider spread of size distribution, and less uniform dispersion on graphene. The electrocatalytic activity of Pt on graphene was verified by cyclic voltammetry. In addition, Raman scattering spectroscopy showed an increase in D- to G-peak ratio and an effect of surface-enhanced Raman scattering for the graphene decorated with Pt nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.