The empirical evidence in the papers in this special issue identifies pervasive and difficult cross-scale and cross-level interactions in managing the environment. The complexity of these interactions and the fact that both scholarship and management have only recently begun to address this complexity have provided the impetus for us to present one synthesis of scale and cross-scale dynamics. In doing so, we draw from multiple cases, multiple disciplines, and multiple perspectives. In this synthesis paper, and in the accompanying cases, we hypothesize that the dynamics of cross-scale and cross-level interactions are affected by the interplay between institutions at multiple levels and scales. We suggest that the advent of co-management structures and conscious boundary management that includes knowledge co-production, mediation, translation, and negotiation across scale-related boundaries may facilitate solutions to complex problems that decision makers have historically been unable to solve.
The appropriate scales for science, management, and decision making cannot be unambiguously derived from physical characteristics of water resources. Scales are a joint product of social and biophysical processes. The politics-of-scale metaphor has been helpful in drawing attention to the ways in which scale choices are constrained overtly by politics, and more subtly by choices of technologies, institutional designs, and measurements. In doing so, however, the scale metaphor has been stretched to cover a lot of different spatial relationships. In this paper, we argue that there are benefits to understanding -and actions to distinguish-issues of scale from those of place and position. We illustrate our arguments with examples from the governance of water resources in the Mekong region, where key scientific information is often limited to a few sources. Acknowledging how actors' interests fit along various spatial, temporal, jurisdictional, and other social scales helps make the case for innovative and more inclusive means for bringing multi-level interests to a common forum. Deliberation can provide a check on the extent of shared understanding and key uncertainties.
Managing water for sustainable use and economic development is both a technical and a governance challenge in which knowledge production and sharing play a central role. This article evaluates and compares the role of participatory governance and scientific information in decision-making in four basins in Brazil, Mexico, Thailand, and the United States. Water management institutions in each of the basins have evolved during the last 10-20 years from a relatively centralized water-management structure at the state or national level to a decision structure that involves engaging water users within the basins and the development of participatory processes. This change is consistent with global trends in which states increasingly are expected to gain public acceptance for larger water projects and policy changes. In each case, expanded citizen engagement in identifying options and in decision-making processes has resulted in more complexity but also has expanded the culture of integrated learning. International funding for water infrastructure has been linked to requirements for participatory management processes, but, ironically, this study finds that participatory processes appear to work better in the context of decisions that are short-term and easily adjusted, such as water-allocation decisions, and do not work so well for longer-term, high-stakes decisions regarding infrastructure. A second important observation is that the costs of capacity building to allow meaningful stakeholder engagement in water-management decision processes are not widely recognized. Failure to appreciate the associated costs and complexities may contribute to the lack of successful engagement of citizens in decisions regarding infrastructure.water management | water sustainability | public participation | stakeholder engagement
The way urbanization unfolds over the next few decades in the developing countries of Asia will have profound implications for sustainability. One of the more important opportunities is to guide urbanization along pathways that begin to uncouple these gains in well‐being from rising levels of energy use. Increasing energy use for transport, construction, climate control in houses and offices, and industrial processes is often accompanied by increasing levels of atmospheric emissions that impact human health, ecosystem functions, and the climate system. Agriculture, forestry, and animal husbandry alter carbon stocks and fluxes as carbon dioxide, methane, and black carbon. In this article we explore how carbon management could be integrated into the development strategies of cities and urbanizing regions. In particular, we explore how changes in urban form, functions, and roles might alter the timing, aggregation, spatial distribution, and composition of carbon emissions. Our emphasis is on identifying system linkages and points of leverage. The study draws primarily on emission inventories and regional development histories carried out in the regions around the cities of Manila, Jakarta, Ho Chi Minh City, New Delhi, and Chiang Mai. We find that how urban functions, such as mobility, shelter, and food, are provided has major implications for carbon emissions, and that each function is influenced by urban form and role in distinct ways. Our case studies highlight the need for major “U‐turns” in urban policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.