Moderate exercise diminishes proinflammation cytokine production in various types of immune cells, but the intracellular signaling pathways involved are not completely understood. Phosphoinositide 3-kinase (PI3K)/Akt, a crucial downstream protein of toll-like receptor 4 (TLR4), may modulate inflammation. The present study aimed to investigate the effects of exercises on lipopolysaccharide (LPS)-stimulated inflammatory response in splenocytes and to explore potential mechanisms of the PI3K/Akt pathway. Male rats were divided into sedentary and exercise groups. Animals in the exercise group underwent endurance training 30 min/day, 7 days/wk, at the speed of 20 m/min on a treadmill for 1 wk. Here, we showed that exercise 1) attenuated TLR4, 2) increased PI3K/phospho-Akt (p-Akt), and 3) diminished phospho-nuclear factor-κB (p-NF-κB) expression. In addition, administration of splenocytes isolated from trained rats with LPS in vitro showed 1) reduced tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and nitric oxide secretion and 2) decreased splenocyte proliferation. The plasma corticosterone (CCS) level in the exercise group was higher than that in the sedentary group. We confirmed that CCS down-regulated TNF-α and IL-6 secretion in response to LPS in rat splenocytes. Dexamethasone also significantly attenuated LPS-evoked release of TNF-α and IL-6 in a dose-dependent manner. These findings suggested that exercise dampened the secretion of inflammation mediators probably through partial inhibition of TLR4 and p-NF-κB and activation of PI3K/p-Akt expression in the spleen.
The increasing intensity of exercise enhanced corticosterone and lactate production in both humans and rodents. Our previous studies also demonstrated that lactate could stimulate testosterone production in vivo and in vitro. However, the production of testosterone in response to combined corticosterone and lactate on Leydig cells, and underlying molecular mechanisms are remained unclear. This study investigated the changes in testosterone levels of Leydig cells upon exposure to lactate, corticosterone or combination of both, and revealed the detailed mechanisms. Leydig cells were isolated from rat testes, and treated with different concentrations of lactate (2.5-20 mM), cortiosterone (10 -10 M) and lactate plus corticosterone. The production of testosterone were assayed by radioimmunoassay, and the key molecular proteins, including luteinizing hormone receptor (LHR), protein kinase A (PKA), steroidogenic acute regulatory protein (StAR), and cholesterol P450 side-chain cleavage enzyme (P450scc) involved in testosterone production were performed by Western blot. Results showed that testosterone levels were significantly increased with lactate, while decresed with corticosterone and lactate plus corticosterone treatment. Protein expressions of LHR and P450scc were upregulated with lactate treatment. However, PKA and P450scc were downregulated by lactate plus corticosterone treatment. This downregulation was followed by decreased testoterone levels in Leydig cells. Furthermore, acetylated cAMP, which activates testosterone production was increased with lactate, but not altered by conrtiosterone. Our findings conclude that corticosterone may interfere with lactate, and restrict lactate-stimulated testosterone production in Leydig cells. J. Cell. Physiol. 232: 2135-2144, 2017. © 2016 Wiley Periodicals, Inc.
The effect of the i.v. administration of endotoxin (LPS), diphosphoryl lipid A, and the non-toxic derivative monophosphoryl lipid A (MPL), on the production of serum cachectin (TNF), IFN-gamma, and the appearance of endotoxin shock have been measured in mice primed with Listeria monocytogenes. All three of the lipid A varieties induced the production of TNF in a dose-dependent manner. Although comparable peak levels of TNF were produced (5 X 10(5) to 1 X 10(6) U/ml), treatments with LPS or diphosphoryl lipid A were lethal whereas those with MPL were not. A study following TNF in the mouse sera for up to 24 h after treatment with the lipid A types showed that serum levels of TNF peaked 90 min after the treatment, and that TNF levels induced by LPS treatment were maintained for several hours longer than those induced by lipid A or MPL. All three molecules also resulted in the production of IFN-gamma in the serum, which peaked at 4 to 5 h after treatment. After 90 min there were no significant differences in the levels of serum IFN-gamma in any of the groups of treated animals. However, as was observed with the TNF, the levels of IFN in animals treated with LPS persisted longer than those induced by MPL or lipid A. These results suggest that the non-toxic MPL as well as the toxic forms of lipid A can induce the production of TNF by macrophages. Furthermore, although it is essential, TNF alone is not necessarily sufficient to induce septic shock in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.