Being the newest member of the carbon materials family, graphene possesses many unique physical properties resulting is a wide range of applications. Recently, it was discovered that graphene oxide can effectively adsorb DNA and at the same time, it can completely quench adsorbed fluorophores. These properties make it possible to prepare DNA-based optical sensors using graphene oxide. While practical analytical applications are being demonstrated, the fundamental understanding of binding between graphene oxide and DNA in solution received relatively less attention. In this work, we report that the adsorption of 12, 18, 24, and 36-mer single-stranded DNA on graphene oxide is affected by several factors.For example, shorter DNAs are adsorbed faster and bind more tightly to the surface of graphene. The This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/la10379262 adsorption is favored by a lower pH and a higher ionic strength. The presence of organic solvents such as ethanol can either increase or decrease adsorption depending on the ionic strength of the solution. By adding the complementary DNA, close to 100% desorption of the absorbed DNA on graphene can be achieved. On the other hand, if temperature is increased, only a small percentage of DNA is desorbed.Further, the adsorbed DNA can also be exchanged by free DNA in solution. These findings are important for further understanding the interactions between DNA and graphene and for the optimization of DNA and graphene based devices and sensors.
Mercury is a highly toxic environmental pollutant with bioaccumulative properties. Therefore, new materials are required to not only detect but also effectively remove mercury from environmental sources, such as water. We herein describe a polyacrylamide hydrogel-based sensor functionalized with a thyminerich DNA that can simultaneously detect and remove mercury from water. Detection is achieved by selective binding of Hg 2+ between two thymine bases inducing a hairpin structure where upon addition of SYBR Green I dye green fluorescence is observed. In the absence of Hg 2+ , however, addition of the dye results in yellow fluorescence. Using the naked eye, the detection limit in a 50 mL water sample is 10 nM Hg 2+ . This sensor can be regenerated using a simple acid treatment and can remove Hg 2+ from water at a rate of ~1 hr -1 . This sensor was also used to detect and remove Hg 2+ from samples of Lake Ontario spiked with mercury. In addition, these hydrogel-based sensors are resistant to nuclease and can be rehydrated from dried gels for storage and DNA protection. Similar methods can be used to functionalize hydrogels with other nucleic acids, proteins, and small molecules for environmental and biomedical applications.
Aptamers are single-stranded nucleic acids that selectively bind to target molecules. Most aptamers are obtained through a combinatorial biology technique called SELEX. Since aptamers can be isolated to bind to almost any molecule of choice, can be readily modified at arbitrary positions and they possess predictable secondary structures, this platform technology shows great promise in biosensor development. Over the past two decades, more than one thousand papers have been published on aptamer-based biosensors. Given this progress, the application of aptamer technology in biomedical diagnosis is still in a quite preliminary stage. Most previous work involves only a few model aptamers to demonstrate the sensing concept with limited biomedical impact. This Critical Review aims to summarize progresses that might enable practical applications of aptamer for biological samples. First, general sensing strategies based on the unique properties of aptamers are summarized. Each strategy can be coupled to various signaling methods. Among these, a few detection methods including fluorescence lifetime, flow cytometry, upconverting nanoparticles, nanoflare technology, magnetic resonance imaging, electronic aptamer-based sensors, and lateral flow devices have been discussed in more detail since they are more likely to work in a complex sample matrix. The current limitations of this field include the lack of high quality aptamers for clinically important targets. In addition, the aptamer technology has to be extensively tested in a clinical sample matrix to establish reliability and accuracy. Future directions are also speculated to overcome these challenges.3
Hydrogen peroxide (H2O2) is a key molecule in biology. As a byproduct of many enzymatic reactions, H2O2 is also a popular biosensor target. Recently, interfacing H2O2 with inorganic nanoparticles has produced a number of nanozymes showing peroxidase or catalase activities. CeO2 nanoparticle (nanoceria) is a classical nanozyme. Herein, a fluorescently labeled DNA is used as a probe, and H2O2 can readily displace adsorbed DNA from nanoceria, resulting in over 20-fold fluorescence enhancement. The displacement mechanism instead of oxidative DNA cleavage is confirmed by denaturing gel electrophoresis and surface group pKa measurement. This system can sensitively detect H2O2 down to 130 nM (4.4 parts-per-billion). When coupled with glucose oxidase, glucose is detected down to 8.9 μM in buffer. Detection in serum is also achieved with results comparable with that from a commercial glucose meter. With an understanding of the ligand role of H2O2, new applications in rational materials design, sensor development, and drug delivery can be further exploited.
Metal-ion detection and speciation analysis is crucial for environmental monitoring. Despite the importance of lanthanides, few sensors are available for their detection. DNAzymes have been previously used to detect divalent metals, while no analytical work was carried out for trivalent and tetravalent ions. Herein, in vitro selection was performed using a Ce(4+) salt as the target metal, and a new DNAzyme (named Ce13) with a bulged hairpin structure was isolated and characterized. Interestingly, Ce13 has almost no activity with Ce(4+) but is highly active with all trivalent lanthanides and Y(3+), serving as a general probe for rare earth metals (omitting Sc). A DNAzyme beacon was engineered detecting down to 1.7 nM Ce(3+) (240 parts per trillion), and other lanthanides showed similar sensitivity. The feasibility of metal speciation analysis was demonstrated by measuring the reduction of Ce(4+) to Ce(3+).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.