This paper presents innovative reinforcement learning methods for automatically tuning the parameters of a proportional integral derivative controller. Conventionally, the high dimension of the Q-table is a primary drawback when implementing a reinforcement learning algorithm. To overcome the obstacle, the idea underlying the n-armed bandit problem is used in this paper. Moreover, gain-scheduled actions are presented to tune the algorithms to improve the overall system behavior; therefore, the proposed controllers fulfill the multiple performance requirements. An experiment was conducted for the piezo-actuated stage to illustrate the effectiveness of the proposed control designs relative to competing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.