A general, mild, and efficient method for the hydrolysis of organotrifluoroborates to unveil organoboronic acids using silica gel and H 2 O was developed. This method proved to be tolerant of a broad range of aryl-, heteroaryl-, alkenyl-, and alkyltrifluoroborates as well as structurally diverse aminomethylated organotrifluoroborates. As anticipated, electron-rich substrates provided the corresponding boronic acids more readily than electron-poor substrates, owing to the resonance stabilized difluoroborane intermediate. The method developed was expanded further for the conversion of organotrifluoroborates to the corresponding boronate esters.
We report an extensive structure-activity relationship (SAR) of seventy-eight compounds active against two pancreatic cancer cell lines. Our comprehensive evaluation of these compounds utilizes SAR that allow us to evaluate which features of potent compounds play a key role in their cytotoxicity. This is the first report of 19 new second-generation structures, where these new compounds were designed from the first generation of 59 compounds. These 78 structures were tested for their cytotoxicity and this is the first report of their activity against 2 pancreatic cancer cell lines. Our results show that out of 78 compounds, three compounds are worth pursuing as leads, as they show potency of ≥55% in both cancer cell lines. These three compounds all have a common structural motif, 2 consecutive D-amino acids and an N-methyl moiety. Further, of these three compounds, two are second-generation structures, indicating that we can incorporate and utilize data from the first generation to design potency into the second generation. Finally, one analog is in the mid nanomolar range, and has the lowest IC50 of any reported San A derivative. These analogs share no structural homology to current pancreatic cancer drugs, and are cytotoxic at levels on par with existing drugs treating other cancers. Thus, we have established Sansalvamide A as an excellent lead for killing multiple pancreatic cancer cell lines.
We report the synthesis of 34 second-generation Sansalvamide A derivatives. San A derivatives have unique anticancer properties and target multiple cancers, including colon, pancreatic, breast, prostate, and melanoma. As novel templates, the derivatives described herein explore the role of stereochemistry, amide bond geometry, transannular hydrogen bonding, and polarity on antitumor potency. Testing the chemotherapeutic activity of these derivatives against multiple cancer cell lines will provide clear structural motifs and identify conformational space that is important for cytotoxicity. The 34 compounds presented are divided into six series, where five series involve the insertion of D-amino acids in conjunction with four structural features at each of the five positions of the macrocycle. The sixth series involves comparison between all L- and all D-amino acid derivatives with N-methyls placed at each position around the macrocyclic core. The four structural features explored in conjunction with D-amino acids include N-methyl amino acids, aromatic amino acids, polar amino acids, and hydrophobic alkyl amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.