Abstract:The demand response and accommodation of different renewable energy resources are essential factors in a modern smart microgrid. This paper investigates the energy management related to the short-term (24 h) unit commitment and demand response in a factory power system with uncertain photovoltaic power generation. Elastic loads may be activated subject to their operation constraints in a manner determined by the electricity prices while inelastic loads are inflexibly fixed in each hour. The generation of power from photovoltaic arrays is modeled as a Gaussian distribution owing to its uncertainty. This problem is formulated as a stochastic mixed-integer optimization problem and solved using two levels of algorithms: the master level determines the optimal states of the units (e.g., micro-turbine generators) and elastic loads; and the slave level concerns optimal real power scheduling and power purchase/sale from/to the utility, subject to system operating constraints. This paper proposes two novel encoding schemes used in genetic algorithms on the master level; the point estimate method, incorporating the interior point algorithm, is used on the slave level. Various scenarios in a 30-bus factory power system are studied to reveal the applicability of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.