Enterovirus 71 (EV71) is an important pathogen causing death in children under 5 years old worldwide. However, the underlying pathogenesis remains unclear. This study reveals that EV71 infection in rhabdomyosarcoma (RD) and neuroblastoma (SK-N-SH) cells stimulated the autophagic process, which was demonstrated by an increase of punctate GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3), the level of autophagosome-bound LC3-II protein and double-membrane autophagosome formation. EV71-induced autophagy benefited EV71 replication, which was confirmed by the autophagic inducer rapamycin and the inhibitor 3-methyladenine. Signaling pathway investigation revealed that the decreased expression of phosphorylated mTOR and phosphorylated p70S6K is involved in EV71-induced autophagy in a cell-specific manner. The expression of phosphorylated extracellular signal-regulated kinase (Erk) was suppressed consistently in EV71-infected cells. However it did not participate in the autophagic response of the cell. Other signaling pathway molecules, such as Erk, PI3K/Akt, Bcl-2, BNIP3, and Beclin-1 were not affected by infection with EV71. Electron microscopy showed co-localization of autophagosome-like vesicles with either EV71-VP1 or LC3 protein in neurons of the cervical spinal cord in ICR mice infected with EV71. In conclusion, EV71 infection triggered autophagic flux and induced autophagosome formation both in vitro and in vivo. Autophagy induced by EV71 is beneficial for viral replication. Understanding the role of autophagy induced by EV71 in vitro and the formation of autophagosome-like vesicle in vivo provide new insights into the pathogenesis of EV71 infection.
BackgroundWe previously reported that Enterovirus 71 (EV71) infection activates autophagy, which promotes viral replication both in vitro and in vivo. In the present study we further investigated whether EV71 infection of neuronal SK-N-SH cells induces an autophagic flux. Furthermore, the effects of autophagy on EV71-related pathogenesis and viral load were evaluated after intracranial inoculation of mouse-adapted EV71 (MP4 strain) into 6-day-old ICR suckling mice.ResultsWe demonstrated that in EV71-infected SK-N-SH cells, EV71 structural protein VP1 and nonstructural protein 2C co-localized with LC3 and mannose-6-phosphate receptor (MPR, endosome marker) proteins by immunofluorescence staining, indicating amphisome formation. Together with amphisome formation, EV71 induced an autophagic flux, which could be blocked by NH4Cl (inhibitor of acidification) and vinblastine (inhibitor of fusion), as demonstrated by Western blotting. Suckling mice intracranially inoculated with EV71 showed EV71 VP1 protein expression (representing EV71 infection) in the cerebellum, medulla, and pons by immunohistochemical staining. Accompanied with these infected brain tissues, increased expression of LC3-II protein as well as formation of LC3 aggregates, autophagosomes and amphisomes were detected. Amphisome formation, which was confirmed by colocalization of EV71-VP1 protein or LC3 puncta and the endosome marker protein MPR. Thus, EV71-infected suckling mice (similar to EV71-infected SK-N-SH cells) also show an autophagic flux. The physiopathological parameters of EV71-MP4 infected mice, including body weight loss, disease symptoms, and mortality were increased compared to those of the uninfected mice. We further blocked EV71-induced autophagy with the inhibitor 3-methyladenine (3-MA), which attenuated the disease symptoms and decreased the viral load in the brain tissues of the infected mice.ConclusionsIn this study, we reveal that EV71 infection of suckling mice induces an amphisome formation accompanied with the autophagic flux in the brain tissues. Autophagy induced by EV71 promotes viral replication and EV71-related pathogenesis.
Triple-negative breast cancer (TNBC) patients usually lead to poor prognosis and survival because of metastasis. The major sites for TNBC metastasis include the lungs, brain, liver, and bone. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides and have been reported as important regulators in BC metastasis. However, the underlying mechanisms for lncRNAs regulating TNBC metastasis are not fully understood. Here we found that linc-ZNF469-3 was highly expressed in lung-metastatic LM2-4175 TNBC cells and overexpression of linc-ZNF469-3 enhanced invasion ability and stemness properties in vitro and lung metastasis in vivo. Furthermore, we found linc-ZNF469-3 physically interacted with miR-574-5p and overexpression of miR-574-5p attenuated ZEB1 expression. Importantly, endogenous high expressions of linc-ZNF469-3 and ZEB1 were correlated with tumor recurrence in TNBC patients with lung metastasis. Taken together, our findings suggested that linc-ZNF469-3 promotes lung metastasis of TNBC through miR-574-5p-ZEB1 signaling axis and may be used as potential prognostic marker for TNBC patients.
HIP1 serves as an early-stage prognostic biomarker and a metastatic suppressor. Reduced expression during AdCA progression can relieve HIP1 suppression of Akt-mediated epithelial-mesenchymal transition and thereby lead to development of late metastases and poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.