Studying neural connections and activities in vivo is fundamental to understanding brain functions. Given the cm-size brain and three-dimensional neural circuit dynamics, deep-tissue, high-speed volumetric imaging is highly desirable for brain study. With sub-micrometer spatial resolution, intrinsic optical sectioning, and deep-tissue penetration capability, two-photon microscopy (2PM) has found a niche in neuroscience. However, current 2PM typically relies on slow axial scan for volumetric imaging, and the maximal penetration depth is only about 1 mm. Here, we demonstrate that by integrating two gradient-index (GRIN) lenses into 2PM, both penetration depth and volume-imaging rate can be significantly improved. Specifically, an 8-mm long GRIN lens allows imaging relay through a whole mouse brain, while a tunable acoustic gradient-index (TAG) lens provides sub-second volume rate via 100 kHz ∼ 1 MHz axial scan. This technique enables the study of calcium dynamics in cm-deep brain regions with sub-cellular and sub-second spatiotemporal resolution, paving the way for interrogating deep-brain functional connectome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.