Air lubrication is a promising drag reduction technology for ships because it is considered to reduce the skin-friction resistance of ships by changing the energy of turbulent boundary layers. Air lubrication drag reduction can be classified into: microbubble drag reduction (injection of microbubbles along the hull), air film drag reduction (using a larger film of air to cover the ship bottom), and air cavity drag reduction (recesses underneath the hull are filled with air). In this paper, the research progress of the air lubrication drag reduction technology is reviewed from experimental and numerical aspects. For these three drag reduction methods, based on the aspect of experimental research, the main research focus is the analysis and evaluation of the influencing factors such as the gas injection form and drag reduction rate; in terms of theoretical research, the accuracy of the simulation calculation depends on the selection of the theoretical calculation model and the analysis of the drag reduction mechanism. The paper introduces, in detail, the typical experimental phenomena and the theoretical results of a numerical study of three types of drag reduction methods, revealing the essence of air lubrication technology to achieve drag reduction by changing the physical properties of the turbulent boundary layer.
Drag reduction by injecting air is a promising engineering method for improving ship performance. A novel automatic air intake drag reduction strut structure based on the Venturi effect is proposed for the high-speed small water-plane area twin hull vessels in the present study. The drag reduction strut can achieve the function of automatic air intake when the vehicle is moving at high speed, and the air inhaled and the incoming flow form bubbly flows to cover the strut surface, effectively reducing the drag of the strut. Considering the longitudinal symmetry of the strut structure, a two-dimensional single-chip drag reduction strut structure is designed to facilitate analysis and a solution. The volume of fluid model is combined with the k-ω SST turbulence model, and a numerical simulation is carried out to investigate the variation of the air inflow, the air volume fraction in the bubbly flows of the strut and the drag reduction rate of the strut for different sailing speeds. The analysis result shows that when the proposed model reaches a certain speed, the external air is inhaled by the strut intake duct, and the bubbly flows are formed with the incoming flow covering the surface of the strut, thereby reducing the drag coefficient. Meanwhile, it is found that as the sailing speed increases, the drag reduction rate of the strut gradually rises and its maximum value reaches about 30%. For high sailing speeds, the drag reduction rate is affected by wave-making resistance so that it gradually declines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.