Electric-mechanical equipment manufacturing industries focus on the implementation of intelligent manufacturing systems in order to enhance customer services for highly customized machines with high-profit margins such as electric power transformers. Intelligent manufacturing consists in using supply chain data that are integrated for smart decision making during the production life cycle. This research, in cooperation with a large electric power transformer manufacturer, provides an overview of critical intelligent manufacturing (IM) technologies. An ontology schema forms the terminology relationships needed to build two intelligent supply chain management (SCM) modules for the IM system demonstration. The two core modules proposed in this research are the intelligent supplier selection and component ordering module and the product quality prediction module. The intelligent supplier selection and component ordering module dispatches orders that match the best options of suppliers based on combined analytic hierarchy process (AHP) analysis and multiobjective integer optimization. In the case study, the intelligent supplier selection and component ordering module demonstrates several acceptable Pareto solutions based on strict constraints, which is a very challenging task for decision makers without assistance. The second module is the product quality prediction module which uses multivariate regression and ARIMA to predict the quality of the finished products. Results show that the R square values are very close to 1. The module shortens the time for the company to accurately judge whether the two semifinished iron cores for the product meet the quality requirements. The component supplier selection module and the finished product quality prediction module developed in this research can be extended to other IM systems for general high-end equipment manufacturers using mass customization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.