We present the first implantable drug delivery system for controlled dosing, timing, and location in small animals. Current implantable drug delivery devices do not provide control over these factors or are not feasible for implantation in research animals as small as mice. Our system utilizes an integrated electrolysis micropump, is refillable, has an inert drug reservoir for broad drug compatibility, and is capable of adjustment to the delivery regimen while implanted. Electrochemical impedance spectroscopy (EIS) was used for characterization of electrodes on glass substrate and a flexible Parylene substrate. Benchtop testing of the electrolysis actuator resulted in flow rates from 1 to 34 μL/min on glass substrate and up to 6.8 μL/min on Parylene substrate. The fully integrated system generated a flow rate of 4.72 ± 0.35 μL/min under applied constant current of 1.0 mA while maintaining a power consumption of only ~3 mW. Finally, we demonstrated in vivo application of the system for anti-cancer drug delivery in mice.
An implantable manually-actuated drug delivery device, consisting of a refillable drug reservoir, flexible cannula, check valve, and suture tabs, was investigated as a new approach for delivering pharmaceuticals to treat chronic ocular diseases. Devices are fabricated by molding and bonding three structured layers of polydimethylsiloxane. A 30 gauge non-coring needle was used to refill the reservoir; this size maximized the number of repeated refills while minimizing damage to the reservoir. The check valve cracking pressure was 76 +/- 8.5 mmHg (mean +/- SE, n = 4); the valve sustained > 2000 mmHg of reverse pressure without leakage. Constant delivery at 1.57 +/- 0.2 microL/sec and 0.61 +/- 0.2 microL/sec (mean +/- SE, n = 4) under 500 mmHg and 250 mmHg of applied pressure, respectively, was obtained in benchtop experiments. The valve closing time constant was 10.2 s for 500 mmHg and 14.2 s for 250 mmHg. Assembled devices were successfully demonstrated in benchtop, ex vivo, and in vivo experiments.
The first electrochemical actuator with a Parylene bellows for intraocular drug delivery is presented in which the bellows separates the electrolysis actuation chamber from the drug reservoir. The Parylene bellows was fabricated using a novel polyethylene glycol (PEG)-molding process and mechanically characterized. Optimization of the gas generation efficiency of the actuators was performed. We achieved an efficiency approaching 80% and over 1.5 mm deflection with our actuator. Wireless operation was also demonstrated.
Parylene C, an emerging material in microelectromechanical systems, is of particular interest in biomedical and lab-on-a-chip applications where stable, chemically inert surfaces are desired. Practical implementation of Parylene C as a structural material requires the development of micropatterning techniques for its selective removal. Dry etching methods are currently the most suitable for batch processing of Parylene structures. A performance comparison of three different modes of Parylene C plasma etching was conducted using oxygen as the primary reactive species. Plasma, reactive ion and deep reactive ion etching techniques were explored. In addition, a new switched chemistry process with alternating cycles of fluoropolymer deposition and oxygen plasma etching was examined to produce structures with vertical sidewalls. Vertical etch rates, lateral etch rates, anisotropy and sidewall angles were characterized for each of the methods. This detailed characterization was enabled by the application of replica casting to obtain cross sections of etched structures in a non-destructive manner. Application of the developed etch recipes to the fabrication of complex Parylene C microstructures is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.